/*
* Copyright (C) 2024 Brett Terpstra
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
#include "blt/gfx/renderer/resource_manager.h"
#include "blt/gfx/renderer/batch_2d_renderer.h"
#include "blt/gfx/renderer/camera.h"
#include
#include
#include
#include
#include
#include
#include
blt::gfx::matrix_state_manager global_matrices;
blt::gfx::resource_manager resources;
blt::gfx::batch_renderer_2d renderer_2d(resources);
blt::gfx::first_person_camera_2d camera;
blt::gfx::fbo_t render_texture;
blt::u64 lastTime;
double ft = 0;
double fps = 0;
int sub_ticks = 1;
namespace im = ImGui;
class node
{
private:
blt::gfx::point2d_t point;
blt::vec2 velocity;
public:
explicit node(const blt::gfx::point2d_t& point): point(point)
{}
blt::vec2& getVelocityRef()
{
return velocity;
}
blt::vec2& getPositionRef()
{
return point.pos;
}
[[nodiscard]] const blt::vec2& getPosition() const
{
return point.pos;
}
[[nodiscard]] auto& getRenderObj() const
{
return point;
}
};
class edge
{
private:
blt::size_t i1, i2;
public:
edge(blt::size_t i1, blt::size_t i2): i1(i1), i2(i2)
{
BLT_ASSERT(i1 != i2 && "Indices cannot be equal!");
}
inline friend bool operator==(edge e1, edge e2)
{
return (e1.i1 == e2.i1 || e1.i1 == e2.i2) && (e1.i2 == e2.i1 || e1.i2 == e2.i2);
}
[[nodiscard]] size_t getFirst() const
{
return i1;
}
[[nodiscard]] size_t getSecond() const
{
return i2;
}
};
struct edge_hash
{
blt::u64 operator()(const edge& e) const
{
return e.getFirst() * e.getSecond();
}
};
class graph
{
private:
std::vector nodes;
blt::hashset_t edges;
blt::hashmap_t> connected_nodes;
bool sim = false;
float sim_speed = 1;
float threshold = 0.01;
float max_force_last = 1;
float repulsive_constant = 12.0;
float spring_constant = 24.0;
float ideal_spring_length = 175.0;
float initial_temperature = 69.5;
float cooling_rate = 0.999;
int current_iterations = 0;
int max_iterations = 5000;
static constexpr float POINT_SIZE = 35;
[[nodiscard]] blt::vec2 attr(const std::pair& v1, const std::pair& v2) const
{
auto dir = v2.second.getPosition() - v1.second.getPosition();
auto mag = dir.magnitude();
auto unit = mag == 0 ? blt::vec2() : dir / mag;
auto ideal = std::log(mag / ideal_spring_length);
return spring_constant * ideal * unit;
}
[[nodiscard]] blt::vec2 rep(const std::pair& v1, const std::pair& v2) const
{
auto dir = v2.second.getPosition() - v1.second.getPosition();
auto mag = dir.magnitude();
auto unit = mag == 0 ? blt::vec2() : dir / mag;
auto mag_sq = mag * mag;
auto scale = repulsive_constant / mag_sq;
return scale * unit;
}
[[nodiscard]] float cooling_factor() const
{
return static_cast(initial_temperature * std::pow(cooling_rate, current_iterations));
}
void create_random_graph(blt::i32 width, blt::i32 height, blt::size_t min_nodes, blt::size_t max_nodes, blt::f64 connectivity)
{
// don't allow points too close to the edges of the window.
width -= POINT_SIZE;
height -= POINT_SIZE;
static std::random_device dev;
static std::uniform_real_distribution chance(0.0, 1.0);
std::uniform_int_distribution node_count_dist(min_nodes, max_nodes);
std::uniform_real_distribution pos_x_dist(POINT_SIZE, static_cast(width));
std::uniform_real_distribution pos_y_dist(POINT_SIZE, static_cast(height));
auto node_count = node_count_dist(dev);
for (blt::size_t i = 0; i < node_count; i++)
{
float x, y;
do
{
bool can_break = true;
x = pos_x_dist(dev);
y = pos_y_dist(dev);
for (const auto& node : nodes)
{
const auto& rp = node.getRenderObj().pos;
float dx = rp.x() - x;
float dy = rp.y() - y;
float dist = std::sqrt(dx * dx + dy * dy);
if (dist <= POINT_SIZE)
{
can_break = false;
break;
}
}
if (can_break)
break;
} while (true);
nodes.push_back(node({x, y, POINT_SIZE}));
}
for (const auto& node1 : blt::enumerate(nodes))
{
for (const auto& node2 : blt::enumerate(nodes))
{
if (node1.first == node2.first)
continue;
if (chance(dev) <= connectivity)
connect(node1.first, node2.first);
}
}
std::uniform_int_distribution node_select_dist(0ul, nodes.size() - 1);
for (blt::size_t i = 0; i < nodes.size(); i++)
{
if (connected_nodes[i].size() <= 1)
{
for (blt::size_t j = connected_nodes[i].size(); j < 2; j++)
{
blt::u64 select;
do
{
select = node_select_dist(dev);
if (select != i && !connected_nodes[i].contains(select))
break;
} while (true);
connect(i, select);
}
}
}
}
public:
graph() = default;
graph(blt::i32 width, blt::i32 height, blt::size_t min_nodes, blt::size_t max_nodes, blt::f64 connectivity)
{
create_random_graph(width, height, min_nodes, max_nodes, connectivity);
}
void reset(blt::i32 width, blt::i32 height, blt::size_t min_nodes, blt::size_t max_nodes, blt::f64 connectivity)
{
sim = false;
current_iterations = 0;
max_force_last = 1.0;
nodes.clear();
edges.clear();
connected_nodes.clear();
create_random_graph(width, height, min_nodes, max_nodes, connectivity);
}
void connect(blt::u64 n1, blt::u64 n2)
{
edges.insert(edge{n1, n2});
connected_nodes[n1].insert(n2);
connected_nodes[n2].insert(n1);
}
[[nodiscard]] bool connected(blt::u64 e1, blt::u64 e2) const
{
return edges.contains({e1, e2});
}
void render(double frame_time)
{
if (sim && current_iterations < max_iterations && max_force_last > threshold)
{
for (int _ = 0; _ < sub_ticks; _++)
{
// calculate new forces
for (const auto& v1 : blt::enumerate(nodes))
{
blt::vec2 attractive;
blt::vec2 repulsive;
for (const auto& v2 : blt::enumerate(nodes))
{
if (v1.first == v2.first)
continue;
attractive += attr(v1, v2);
repulsive += rep(v1, v2);
}
v1.second.getVelocityRef() = attractive + repulsive;
}
max_force_last = 0;
// update positions
for (auto& v : nodes)
{
v.getPositionRef() += v.getVelocityRef() * cooling_factor() * static_cast(frame_time * sim_speed) * 0.05f;
max_force_last = std::max(max_force_last, v.getVelocityRef().magnitude());
}
current_iterations++;
}
}
for (const auto& point : nodes)
renderer_2d.drawPointInternal("parker", point.getRenderObj(), 10.0f);
for (const auto& edge : edges)
{
if (edge.getFirst() >= nodes.size() || edge.getSecond() >= nodes.size())
{
BLT_WARN("Edge Error %ld %ld %ld", edge.getFirst(), edge.getSecond(), nodes.size());
} else
{
auto n1 = nodes[edge.getFirst()];
auto n2 = nodes[edge.getSecond()];
renderer_2d.drawLine(blt::make_color(0, 1, 0), 5.0f, n1.getRenderObj().pos, n2.getRenderObj().pos, 2.0f);
}
}
}
void start_sim()
{
sim = true;
}
void stop_sim()
{
sim = false;
}
float& getSimSpeed()
{
return sim_speed;
}
float& getThreshold()
{
return threshold;
}
float& getSpringConstant()
{
return spring_constant;
}
float& getInitialTemperature()
{
return initial_temperature;
}
float& getCoolingRate()
{
return cooling_rate;
}
float& getIdealSpringLength()
{
return ideal_spring_length;
}
float& getRepulsionConstant()
{
return repulsive_constant;
}
int& getMaxIterations()
{
return max_iterations;
}
[[nodiscard]] int numberOfNodes() const
{
return static_cast(nodes.size());
}
};
graph main_graph;
#ifdef __EMSCRIPTEN__
std::string resource_prefix = "../";
#else
std::string resource_prefix = "../";
#endif
void init(const blt::gfx::window_data& data)
{
using namespace blt::gfx;
resources.setPrefixDirectory(resource_prefix);
resources.enqueue("res/debian.png", "debian");
resources.enqueue("res/parker.png", "parker");
resources.enqueue("res/parker cat ears.jpg", "parkercat");
global_matrices.create_internals();
resources.load_resources();
renderer_2d.create();
main_graph = graph(data.width, data.height, 5, 25, 0.2);
lastTime = blt::system::nanoTime();
//render_texture = fbo_t::make_multisample_render_texture(1440, 720, 4);
//render_texture = fbo_t::make_multisample_render_target(1440, 720, 8);
//render_texture = fbo_t::make_render_target(1440, 720);
//render_texture = fbo_t::make_render_texture(1440, 720);
}
float x = 50, y = 50;
float sx = 0.5, sy = 0.5;
float ax = 0.05, ay = 0.05;
void update(const blt::gfx::window_data& data)
{
global_matrices.update_perspectives(data.width, data.height, 90, 0.1, 2000);
x += sx;
y += sx;
sx += ax;
sy += ay;
if (x > 256)
sx *= -1;
if (y > 256)
sy *= -1;
//im::ShowDemoWindow();
if (im::Begin("Controls", nullptr, ImGuiWindowFlags_AlwaysAutoResize))
{
static int min_nodes = 5;
static int max_nodes = 25;
static float connectivity = 0.12;
//im::SetNextItemOpen(true, ImGuiCond_Once);
im::Text("FPS: %lf Frame-time (ms): %lf Frame-time (S): %lf", fps, ft * 1000.0, ft);
im::Text("Number of Nodes: %d", main_graph.numberOfNodes());
if (im::CollapsingHeader("Graph Generation Settings"))
{
im::InputInt("Min Nodes", &min_nodes);
im::InputInt("Max Nodes", &max_nodes);
im::SliderFloat("Connectivity", &connectivity, 0, 1);
if (im::Button("Reset Graph"))
{
main_graph.reset(data.width, data.height, min_nodes, max_nodes, connectivity);
}
}
im::SetNextItemOpen(true, ImGuiCond_Once);
if (im::CollapsingHeader("Simulation Settings"))
{
im::InputInt("Max Iterations", &main_graph.getMaxIterations());
im::InputInt("Sub-ticks Per Frame", &sub_ticks);
im::InputFloat("Threshold", &main_graph.getThreshold(), 0.01, 1);
im::InputFloat("Repulsive Constant", &main_graph.getRepulsionConstant(), 0.25, 10);
im::InputFloat("Spring Constant", &main_graph.getSpringConstant(), 0.25, 10);
im::InputFloat("Ideal Spring Length", &main_graph.getIdealSpringLength(), 2.5, 10);
im::SliderFloat("Initial Temperature", &main_graph.getInitialTemperature(), 1, 100);
im::SliderFloat("Cooling Rate", &main_graph.getCoolingRate(), 0, 0.999999, "%.6f");
im::SliderFloat("Simulation Speed", &main_graph.getSimSpeed(), 0, 4);
if (im::Button("Start"))
main_graph.start_sim();
im::SameLine();
if (im::Button("Stop"))
main_graph.stop_sim();
}
im::End();
}
//renderer_2d.drawLine(blt::vec4{1, 0, 1, 1}, 0.0f, blt::vec2{x, y}, blt::vec2{500, 500}, 5.0f);
//renderer_2d.drawLine(blt::vec4{1, 0, 0, 1}, 0.0f, blt::vec2{0, 150}, blt::vec2{240, 0}, 12.0f);
//renderer_2d.drawPoint(blt::vec4{0, 1, 0, 1}, 1.0f, blt::vec2{500, 500}, 50.0f);
//renderer_2d.drawPoint("parkercat", 1.0f, blt::vec2{800, 500}, 256.0f);
main_graph.render(ft);
camera.update();
camera.update_view(global_matrices);
global_matrices.update();
renderer_2d.render();
auto currentTime = blt::system::nanoTime();
auto diff = currentTime - lastTime;
lastTime = currentTime;
ft = static_cast(diff) / 1000000000.0;
fps = 1 / ft;
}
int main(int, const char**)
{
blt::gfx::init(blt::gfx::window_data{"My Sexy Window", init, update, 1440, 720}.setSyncInterval(1));
global_matrices.cleanup();
resources.cleanup();
renderer_2d.cleanup();
blt::gfx::cleanup();
return 0;
}