/* * Copyright (C) 2024 Brett Terpstra * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "blt/gfx/renderer/resource_manager.h" #include "blt/gfx/renderer/batch_2d_renderer.h" #include "blt/gfx/renderer/camera.h" #include #include #include #include #include #include #include #include #include #include #include blt::gfx::matrix_state_manager global_matrices; blt::gfx::resource_manager resources; blt::gfx::batch_renderer_2d renderer_2d(resources); blt::gfx::first_person_camera_2d camera; blt::u64 lastTime; double ft = 0; double fps = 0; int sub_ticks = 1; namespace im = ImGui; struct bounding_box { int min_x = 0; int min_y = 0; int max_x = 0; int max_y = 0; bounding_box(const int min_x, const int min_y, const int max_x, const int max_y): min_x(min_x), min_y(min_y), max_x(max_x), max_y(max_y) { } bool is_screen = true; }; class graph_t { private: std::vector nodes; blt::hashset_t edges; blt::hashmap_t > connected_nodes; bool sim = false; bool run_infinitely = true; float sim_speed = 1; float threshold = 0; float max_force_last = 1; int current_iterations = 0; int max_iterations = 5000; std::unique_ptr equation; static constexpr float POINT_SIZE = 35; blt::i32 current_node = -1; void create_random_graph(bounding_box bb, const blt::size_t min_nodes, const blt::size_t max_nodes, const blt::f64 connectivity, const blt::f64 scaling_connectivity, const blt::f64 distance_factor) { // don't allow points too close to the edges of the window. if (bb.is_screen) { bb.max_x -= POINT_SIZE; bb.max_y -= POINT_SIZE; bb.min_x += POINT_SIZE; bb.min_y += POINT_SIZE; } static std::random_device dev; static std::uniform_real_distribution chance(0.0, 1.0); std::uniform_int_distribution node_count_dist(min_nodes, max_nodes); std::uniform_real_distribution pos_x_dist(static_cast(bb.min_x), static_cast(bb.max_x)); std::uniform_real_distribution pos_y_dist(static_cast(bb.min_y), static_cast(bb.max_y)); const auto node_count = node_count_dist(dev); for (blt::size_t i = 0; i < node_count; i++) { float x, y; do { bool can_break = true; x = pos_x_dist(dev); y = pos_y_dist(dev); for (const auto& node : nodes) { const auto& rp = node.getRenderObj().pos; const float dx = rp.x() - x; const float dy = rp.y() - y; if (const float dist = std::sqrt(dx * dx + dy * dy); dist <= POINT_SIZE) { can_break = false; break; } } if (can_break) break; } while (true); nodes.push_back(node({x, y, POINT_SIZE})); } for (const auto& [index1, node1] : blt::enumerate(nodes)) { for (const auto& [index2, node2] : blt::enumerate(nodes)) { if (index1 == index2) continue; const auto diff = node2.getPosition() - node1.getPosition(); const auto diff_sq = (diff * diff); const auto dist = distance_factor / static_cast(std::sqrt(diff_sq.x() + diff_sq.y())); double dexp; if (dist == 0) dexp = 0; else dexp = 1 / (std::exp(dist) - dist); if (const auto rand = chance(dev); rand <= connectivity && rand >= dexp * scaling_connectivity) connect(index1, index2); } } std::uniform_int_distribution node_select_dist(0ul, nodes.size() - 1); for (blt::size_t i = 0; i < nodes.size(); i++) { if (connected_nodes[i].size() <= 1) { for (blt::size_t j = connected_nodes[i].size(); j < 2; j++) { blt::u64 select; do { select = node_select_dist(dev); if (select != i && !connected_nodes[i].contains(select)) break; } while (true); connect(i, select); } } } } public: graph_t() = default; void make_new(const bounding_box& bb, const blt::size_t min_nodes, const blt::size_t max_nodes, const blt::f64 connectivity) { create_random_graph(bb, min_nodes, max_nodes, connectivity, 0, 25); use_Eades(); } void reset(const bounding_box& bb, const blt::size_t min_nodes, const blt::size_t max_nodes, const blt::f64 connectivity, const blt::f64 scaling_connectivity, const blt::f64 distance_factor) { sim = false; current_iterations = 0; max_force_last = 1.0; nodes.clear(); edges.clear(); connected_nodes.clear(); create_random_graph(bb, min_nodes, max_nodes, connectivity, scaling_connectivity, distance_factor); } void connect(const blt::u64 n1, const blt::u64 n2) { edges.insert(edge{n1, n2}); connected_nodes[n1].insert(n2); connected_nodes[n2].insert(n1); } [[nodiscard]] bool connected(blt::u64 e1, blt::u64 e2) const { return edges.contains({e1, e2}); } void render(const double frame_time) { if (sim && (current_iterations < max_iterations || run_infinitely) && max_force_last > threshold) { for (int _ = 0; _ < sub_ticks; _++) { // calculate new forces for (const auto& v1 : blt::enumerate(nodes)) { blt::vec2 attractive; blt::vec2 repulsive; for (const auto& v2 : blt::enumerate(nodes)) { if (v1.first == v2.first) continue; if (connected(v1.first, v2.first)) attractive += equation->attr(v1, v2); repulsive += equation->rep(v1, v2); } v1.second.getVelocityRef() = attractive + repulsive; } max_force_last = 0; // update positions for (auto& v : nodes) { const float sim_factor = static_cast(frame_time * sim_speed) * 0.05f; v.getPositionRef() += v.getVelocityRef() * equation->cooling_factor(current_iterations) * sim_factor; max_force_last = std::max(max_force_last, v.getVelocityRef().magnitude()); } current_iterations++; } } for (const auto& point : nodes) renderer_2d.drawPointInternal("parker_point", point.getRenderObj(), 10.0f); for (const auto& edge : edges) { if (edge.getFirst() >= nodes.size() || edge.getSecond() >= nodes.size()) { BLT_WARN("Edge Error %ld %ld %ld", edge.getFirst(), edge.getSecond(), nodes.size()); } else { auto n1 = nodes[edge.getFirst()]; auto n2 = nodes[edge.getSecond()]; renderer_2d.drawLine(blt::make_color(0, 1, 0), 5.0f, n1.getRenderObj().pos, n2.getRenderObj().pos, 2.0f); } } } void reset_mouse_drag() { current_node = -1; } void process_mouse_drag(const blt::i32 width, const blt::i32 height) { const auto mouse_pos = blt::make_vec2(blt::gfx::calculateRay2D(width, height, global_matrices.getScale2D(), global_matrices.getView2D(), global_matrices.getOrtho())); if (current_node < 0) { for (const auto& [index, node] : blt::enumerate(nodes)) { const auto pos = node.getPosition(); const auto dist = pos - mouse_pos; if (const auto mag = dist.magnitude(); mag < POINT_SIZE) { current_node = static_cast(index); break; } } } else nodes[current_node].getPositionRef() = mouse_pos; } void use_Eades() { equation = std::make_unique(); } void use_Fruchterman_Reingold() { equation = std::make_unique(); } void start_sim() { sim = true; } void stop_sim() { sim = false; } [[nodiscard]] std::string getSimulatorName() const { return equation->name(); } [[nodiscard]] auto* getSimulator() const { return equation.get(); } [[nodiscard]] auto getCoolingFactor() const { return equation->cooling_factor(current_iterations); } void reset_iterations() { current_iterations = 0; } [[nodiscard]] bool& getIterControl() { return run_infinitely; } [[nodiscard]] float& getSimSpeed() { return sim_speed; } [[nodiscard]] float& getThreshold() { return threshold; } [[nodiscard]] int& getMaxIterations() { return max_iterations; } [[nodiscard]] int numberOfNodes() const { return static_cast(nodes.size()); } }; class engine_t { private: graph_t graph; void draw_gui(const blt::gfx::window_data& data, const double ft) { if (im::Begin("Controls", nullptr, ImGuiWindowFlags_AlwaysAutoResize)) { static int min_nodes = 5; static int max_nodes = 25; static bounding_box bb{0, 0, data.width, data.height}; static float connectivity = 0.12; static float scaling_connectivity = 0.5; static float distance_factor = 100; //im::SetNextItemOpen(true, ImGuiCond_Once); im::Text("FPS: %lf Frame-time (ms): %lf Frame-time (S): %lf", fps, ft * 1000.0, ft); im::Text("Number of Nodes: %d", graph.numberOfNodes()); im::SetNextItemOpen(true, ImGuiCond_Once); if (im::CollapsingHeader("Help")) { im::Text("You can use W/A/S/D to move the camera around"); im::Text("Q/E can be used to zoom in/out the camera"); } if (im::CollapsingHeader("Graph Generation Settings")) { im::Checkbox("Screen Auto-Scale", &bb.is_screen); if (im::CollapsingHeader("Spawning Area")) { bool result = false; result |= im::InputInt("Min X", &bb.min_x, 5, 100); result |= im::InputInt("Max X", &bb.max_x, 5, 100); result |= im::InputInt("Min Y", &bb.min_y, 5, 100); result |= im::InputInt("Max Y", &bb.max_y, 5, 100); if (result) bb.is_screen = false; } if (bb.is_screen) { bb.max_x = data.width; bb.max_y = data.height; bb.min_x = 0; bb.min_y = 0; } im::SeparatorText("Node Settings"); im::InputInt("Min Nodes", &min_nodes); im::InputInt("Max Nodes", &max_nodes); im::SliderFloat("Connectivity", &connectivity, 0, 1); im::SliderFloat("Scaling Connectivity", &scaling_connectivity, 0, 1); im::InputFloat("Distance Factor", &distance_factor, 5, 100); if (im::Button("Reset Graph")) { graph.reset(bb, min_nodes, max_nodes, connectivity, scaling_connectivity, distance_factor); } } im::SetNextItemOpen(true, ImGuiCond_Once); if (im::CollapsingHeader("Simulation Settings")) { im::InputInt("Max Iterations", &graph.getMaxIterations()); im::Checkbox("Run Infinitely", &graph.getIterControl()); im::InputInt("Sub-ticks Per Frame", &sub_ticks); im::InputFloat("Threshold", &graph.getThreshold(), 0.01, 1); graph.getSimulator()->draw_inputs_base(); graph.getSimulator()->draw_inputs(); im::Text("Current Cooling Factor: %f", graph.getCoolingFactor()); im::SliderFloat("Simulation Speed", &graph.getSimSpeed(), 0, 4); } im::SetNextItemOpen(true, ImGuiCond_Once); if (im::CollapsingHeader("System Controls")) { if (im::Button("Start")) graph.start_sim(); im::SameLine(); if (im::Button("Stop")) graph.stop_sim(); if (im::Button("Reset Iterations")) graph.reset_iterations(); im::Text("Select a system:"); const auto current_sim = graph.getSimulatorName(); const char* items[] = {"Eades", "Fruchterman & Reingold"}; static int item_current = 0; ImGui::ListBox("##SillyBox", &item_current, items, 2, 2); if (strcmp(items[item_current], current_sim.c_str()) != 0) { switch (item_current) { case 0: graph.use_Eades(); BLT_INFO("Using Eades"); break; case 1: graph.use_Fruchterman_Reingold(); BLT_INFO("Using Fruchterman & Reingold"); break; default: BLT_WARN("This is not a valid selection! How did we get here?"); break; } } } im::End(); } } public: void init(const blt::gfx::window_data& data) { graph.make_new({0, 0, data.width, data.height}, 5, 25, 0.2); } void render(const blt::gfx::window_data& data, const double ft) { draw_gui(data, ft); auto& io = ImGui::GetIO(); if (!io.WantCaptureMouse && blt::gfx::isMousePressed(0)) graph.process_mouse_drag(data.width, data.height); else graph.reset_mouse_drag(); graph.render(ft); } }; engine_t engine; void init(const blt::gfx::window_data& data) { using namespace blt::gfx; resources.setPrefixDirectory("../"); resources.enqueue("res/debian.png", "debian"); resources.enqueue("res/parker.png", "parker"); resources.enqueue("res/parkerpoint.png", "parker_point"); resources.enqueue("res/parker cat ears.jpg", "parkercat"); global_matrices.create_internals(); resources.load_resources(); renderer_2d.create(); engine.init(data); lastTime = blt::system::nanoTime(); } void update(const blt::gfx::window_data& data) { global_matrices.update_perspectives(data.width, data.height, 90, 0.1, 2000); //im::ShowDemoWindow(); engine.render(data, ft); camera.update(); camera.update_view(global_matrices); global_matrices.update(); renderer_2d.render(); const auto currentTime = blt::system::nanoTime(); const auto diff = currentTime - lastTime; lastTime = currentTime; ft = static_cast(diff) / 1000000000.0; fps = 1 / ft; } int main(int, const char**) { blt::gfx::init(blt::gfx::window_data{"My Sexy Window", init, update, 1440, 720}.setSyncInterval(1)); global_matrices.cleanup(); resources.cleanup(); renderer_2d.cleanup(); blt::gfx::cleanup(); return 0; }