/* * * Copyright (C) 2024 Brett Terpstra * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include "blt/gfx/renderer/resource_manager.h" #include "blt/gfx/renderer/batch_2d_renderer.h" #include "blt/gfx/renderer/camera.h" #include "blt/gfx/raycast.h" #include #include "opencv2/imgcodecs.hpp" #include "opencv2/imgproc.hpp" #include #include "slr.h" #include "float_operations.h" #include #include #include blt::gfx::matrix_state_manager global_matrices; blt::gfx::resource_manager resources; blt::gfx::batch_renderer_2d renderer_2d(resources, global_matrices); blt::gfx::first_person_camera_2d camera; static constexpr blt::size_t TYPE_COUNT = 3; std::array fitness_values{}; double last_fitness = 0; double hovered_fitness = 0; double hovered_fitness_value = 0; bool evaluate = true; std::array has_literal_converter = { true, true, true }; std::array, TYPE_COUNT> literal_crossover_funcs = { [](blt::gp::gp_program&, void* p1_in_ptr, void* p2_in_ptr, void* c1_out_ptr, void* c2_out_ptr) { auto& p1_in = *static_cast(p1_in_ptr); auto& p2_in = *static_cast(p2_in_ptr); auto& c1_out = *static_cast(c1_out_ptr); auto& c2_out = *static_cast(c2_out_ptr); for (blt::size_t i = 0; i < DATA_CHANNELS_SIZE; i++) { auto diff = p1_in.rgb_data[i] - p2_in.rgb_data[i]; c1_out.rgb_data[i] = p1_in.rgb_data[i] - diff; c2_out.rgb_data[i] = p2_in.rgb_data[i] + diff; } }, [](blt::gp::gp_program&, void* p1_in_ptr, void* p2_in_ptr, void* c1_out_ptr, void* c2_out_ptr) { auto& p1_in = *static_cast(p1_in_ptr); auto& p2_in = *static_cast(p2_in_ptr); auto& c1_out = *static_cast(c1_out_ptr); auto& c2_out = *static_cast(c2_out_ptr); auto diff = p1_in - p2_in; c1_out = p1_in - diff; c2_out = p2_in + diff; }, [](blt::gp::gp_program&, void* p1_in_ptr, void* p2_in_ptr, void* c1_out_ptr, void* c2_out_ptr) { auto& p1_in = *static_cast(p1_in_ptr); auto& p2_in = *static_cast(p2_in_ptr); auto& c1_out = *static_cast(c1_out_ptr); auto& c2_out = *static_cast(c2_out_ptr); auto diff = p1_in - p2_in; c1_out = p1_in - diff; c2_out = p2_in + diff; } }; std::array, TYPE_COUNT> literal_mutation_funcs = { [](blt::gp::gp_program& program, void* p1_in_ptr, void* c1_out_ptr) { auto& p1_in = *static_cast(p1_in_ptr); auto& c1_out = *static_cast(c1_out_ptr); for (blt::size_t i = 0; i < DATA_CHANNELS_SIZE; i++) c1_out.rgb_data[i] = p1_in.rgb_data[i] + program.get_random().get_float(-1.0f, 1.0f); }, [](blt::gp::gp_program& program, void* p1_in_ptr, void* c1_out_ptr) { auto& p1_in = *static_cast(p1_in_ptr); auto& c1_out = *static_cast(c1_out_ptr); c1_out = p1_in + program.get_random().get_float(-1.0f, 1.0f); } }; class image_crossover_t : public blt::gp::crossover_t { public: blt::expected apply(blt::gp::gp_program& prog, const blt::gp::tree_t& p1, const blt::gp::tree_t& p2) final { auto sel = prog.get_random().choice(); if (sel) return blt::gp::crossover_t::apply(prog, p1, p2); std::abort(); } }; std::array generation_images; int match_method = cv::TM_SQDIFF; full_image_t base_image; stb_image_t full_base_image; blt::size_t last_run = 0; blt::i32 time_between_runs = 16; bool is_running = false; std::unique_ptr gp_thread = nullptr; constexpr float compare_values(float a, float b) { if (std::isnan(a) || std::isnan(b) || std::isinf(a) || std::isinf(b)) return IMAGE_SIZE; auto dist = a - b; //BLT_TRACE(std::sqrt(dist * dist)); return std::sqrt(dist * dist); } struct fractal_stats { blt::f64 r, g, b, total, combined; }; bool in_box(full_image_t& image, blt::size_t channel, blt::size_t box_size, blt::size_t i, blt::size_t j) { // TODO: this could be made better by starting from the smallest boxes, moving upwards and using the last set of boxes // instead of pixels, since they contain already computed information about if a box is in foam for (blt::size_t x = i; x < i + box_size; x++) { for (blt::size_t y = j; y < j + box_size; y++) { if (image.rgb_data[get_index(x, y) * CHANNELS + channel] > THRESHOLD) return true; } } return false; } fractal_stats get_fractal_value(full_image_t& image) { fractal_stats stats{}; std::array x_data{}; std::array boxes_r{}; std::array boxes_g{}; std::array boxes_b{}; std::array boxes_total{}; std::array boxes_combined{}; for (blt::size_t box_size = IMAGE_SIZE / 2; box_size > 1; box_size /= 2) { blt::ptrdiff_t num_boxes_r = 0; blt::ptrdiff_t num_boxes_g = 0; blt::ptrdiff_t num_boxes_b = 0; blt::ptrdiff_t num_boxes_total = 0; blt::ptrdiff_t num_boxes_combined = 0; for (blt::size_t i = 0; i < IMAGE_SIZE; i += box_size) { for (blt::size_t j = 0; j < IMAGE_SIZE; j += box_size) { auto r = in_box(image, 0, box_size, i, j); auto g = in_box(image, 1, box_size, i, j); auto b = in_box(image, 2, box_size, i, j); if (r) num_boxes_r++; if (g) num_boxes_g++; if (b) num_boxes_b++; if (r && g && b) num_boxes_combined++; if (r || g || b) num_boxes_total++; } } auto x = static_cast(std::log2(box_size)); x_data[static_cast(std::log2(box_size)) - 1] = x; boxes_r[static_cast(std::log2(box_size)) - 1] = static_cast(num_boxes_r == 0 ? 0 : std::log2(num_boxes_r)); boxes_g[static_cast(std::log2(box_size)) - 1] = static_cast(num_boxes_g == 0 ? 0 : std::log2(num_boxes_g)); boxes_b[static_cast(std::log2(box_size)) - 1] = static_cast(num_boxes_b == 0 ? 0 : std::log2(num_boxes_b)); boxes_total[static_cast(std::log2(box_size)) - 1] = static_cast(num_boxes_combined == 0 ? 0 : std::log2( num_boxes_combined)); boxes_combined[static_cast(std::log2(box_size)) - 1] = static_cast(num_boxes_total == 0 ? 0 : std::log2( num_boxes_total)); } slr count_r{x_data, boxes_r}; slr count_g{x_data, boxes_g}; slr count_b{x_data, boxes_b}; slr count_total{x_data, boxes_total}; slr count_combined{x_data, boxes_combined}; #define FUNC(f) (-f) stats.r = FUNC(count_r.beta); stats.g = FUNC(count_g.beta); stats.b = FUNC(count_b.beta); stats.total = FUNC(count_total.beta); stats.combined = FUNC(count_combined.beta); #undef FUNC return stats; } constexpr auto create_fitness_function() { return [](blt::gp::tree_t& current_tree, blt::gp::fitness_t& fitness, blt::size_t index) { auto& v = generation_images[index]; if (evaluate) v = current_tree.get_evaluation_value(nullptr); if (fitness_values[index] < 0) { fitness.raw_fitness = 0; for (blt::size_t i = 0; i < DATA_CHANNELS_SIZE; i++) fitness.raw_fitness += compare_values(v.rgb_data[i], base_image.rgb_data[i]); fitness.raw_fitness /= (IMAGE_SIZE * IMAGE_SIZE); auto raw = get_fractal_value(v); auto fit = std::max(0.0, 1.0 - std::abs(1.35 - raw.combined)); auto fit2 = std::max(0.0, 1.0 - std::abs(1.35 - raw.total)); //BLT_DEBUG("Fitness %lf %lf %lf || %lf => %lf (fit: %lf)", raw.r, raw.g, raw.b, raw.total, raw.combined, fit); if (std::isnan(raw.total) || std::isnan(raw.combined)) fitness.raw_fitness += 400; else fitness.raw_fitness += raw.total + raw.combined + 1.0; cv::Mat base_image_large{full_base_image.get_width(), full_base_image.get_height(), CV_32FC3, full_base_image.get_data()}; cv::Mat templ{IMAGE_SIZE, IMAGE_SIZE, CV_32FC3, v.rgb_data}; cv::Mat result; int result_cols = base_image_large.cols - templ.cols + 1; int result_rows = base_image_large.rows - templ.rows + 1; result.create(result_rows, result_cols, CV_32FC1); double minVal; double maxVal; cv::matchTemplate(base_image_large, templ, result, match_method); minMaxLoc(result, &minVal, &maxVal, nullptr, nullptr, cv::Mat()); /// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better if (match_method == cv::TM_SQDIFF || match_method == cv::TM_SQDIFF_NORMED) { if (std::isinf(minVal) || std::isnan(minVal)) minVal = 200000; fitness.raw_fitness += minVal * 0.01f; //BLT_TRACE("%lf, %lf", minVal, maxVal); } else { BLT_WARN("Hello!"); } fitness.raw_fitness += last_fitness; } else fitness.raw_fitness = fitness_values[index]; fitness.standardized_fitness = fitness.raw_fitness; fitness.adjusted_fitness = (1.0 / (1.0 + fitness.standardized_fitness)); }; } void execute_generation() { BLT_TRACE("------------{Begin Generation %ld}------------", program.get_current_generation()); BLT_TRACE("Evaluate Fitness"); BLT_START_INTERVAL("Image Test", "Fitness"); evaluate = false; program.evaluate_fitness(); BLT_END_INTERVAL("Image Test", "Fitness"); BLT_START_INTERVAL("Image Test", "Gen"); auto sel = blt::gp::select_tournament_t{}; // auto sel = blt::gp::select_fitness_proportionate_t{}; program.create_next_generation(sel, sel, sel); BLT_END_INTERVAL("Image Test", "Gen"); BLT_TRACE("Move to next generation"); program.next_generation(); BLT_TRACE("Evaluate Image"); BLT_START_INTERVAL("Image Test", "Image Eval"); evaluate = true; program.evaluate_fitness(); BLT_END_INTERVAL("Image Test", "Image Eval"); BLT_TRACE("----------------------------------------------"); std::cout << std::endl; // reset all fitness values. for (auto& v : fitness_values) v = -1; last_fitness = 0; } void print_stats() { auto& stats = program.get_population_stats(); BLT_INFO("Stats:"); BLT_INFO("Average fitness: %lf", stats.average_fitness.load()); BLT_INFO("Best fitness: %lf", stats.best_fitness.load()); BLT_INFO("Worst fitness: %lf", stats.worst_fitness.load()); BLT_INFO("Overall fitness: %lf", stats.overall_fitness.load()); } std::atomic_bool run_generation = false; void run_gp() { BLT_DEBUG("Generate Initial Population"); static constexpr auto fitness_func = create_fitness_function(); program.generate_population(type_system.get_type().id(), fitness_func, true); while (!program.should_thread_terminate()) { if ((run_generation || is_running) && (blt::system::getCurrentTimeMilliseconds() - last_run) > static_cast(time_between_runs)) { execute_generation(); print_stats(); run_generation = false; last_run = blt::system::getCurrentTimeMilliseconds(); } } } void init(const blt::gfx::window_data&) { using namespace blt::gfx; for (blt::size_t i = 0; i < config.population_size; i++) resources.set(std::to_string(i), new texture_gl2D(IMAGE_SIZE, IMAGE_SIZE, GL_RGB8)); BLT_INFO("Starting BLT-GP Image Test"); BLT_INFO("Using Seed: %ld", SEED); BLT_START_INTERVAL("Image Test", "Main"); BLT_DEBUG("Setup Base Image"); full_base_image.load(load_image).resize(static_cast(std::max(full_base_image.get_width() / 2ul, IMAGE_SIZE)), static_cast(std::max(full_base_image.get_height() / 2ul, IMAGE_SIZE))); base_image.load(full_base_image); BLT_DEBUG("Setup Types and Operators"); type_system.register_type(); type_system.register_type(); type_system.register_type(); blt::gp::operator_builder builder{type_system}; create_image_operations(builder); create_float_operations(builder); program.set_operations(builder.build()); global_matrices.create_internals(); resources.load_resources(); renderer_2d.create(); gp_thread = std::make_unique(run_gp); } void update(const blt::gfx::window_data& data) { global_matrices.update_perspectives(data.width, data.height, 90, 0.1, 2000); for (blt::size_t i = 0; i < config.population_size; i++) resources.get(std::to_string(i)).value()->upload(generation_images[i].rgb_data, IMAGE_SIZE, IMAGE_SIZE, GL_RGB, GL_FLOAT); ImGui::SetNextWindowSize(ImVec2(350, 512), ImGuiCond_Once); if (ImGui::Begin("Program Control")) { ImGui::Button("Run Generation"); if ((ImGui::IsItemClicked() || (blt::gfx::isKeyPressed(GLFW_KEY_R) && blt::gfx::keyPressedLastFrame())) && !is_running) { run_generation = true; } ImGui::Button("Reset Program"); if (ImGui::IsItemClicked()) program.reset_program(type_system.get_type().id(), true); ImGui::InputInt("Time Between Runs", &time_between_runs, 16); ImGui::Checkbox("Run", &is_running); auto& stats = program.get_population_stats(); ImGui::Text("Stats:"); ImGui::Text("Average fitness: %lf", stats.average_fitness.load()); ImGui::Text("Best fitness: %lf", stats.best_fitness.load()); ImGui::Text("Worst fitness: %lf", stats.worst_fitness.load()); ImGui::Text("Overall fitness: %lf", stats.overall_fitness.load()); ImGui::Separator(); ImGui::Text("Hovered Fitness: %lf", hovered_fitness); ImGui::Text("Hovered Fitness Value: %lf", hovered_fitness_value); ImGui::End(); } const auto mouse_pos = blt::make_vec2(blt::gfx::calculateRay2D(data.width, data.height, global_matrices.getScale2D(), global_matrices.getView2D(), global_matrices.getOrtho())); for (blt::size_t i = 0; i < program.get_current_pop().get_individuals().size(); i++) { auto& ind = program.get_current_pop().get_individuals()[i]; auto ctx = get_pop_ctx(i); float x = ctx.x * IMAGE_SIZE + ctx.x * IMAGE_PADDING; float y = ctx.y * IMAGE_SIZE + ctx.y * IMAGE_PADDING; auto pos = blt::vec2(x, y); auto dist = pos - mouse_pos; auto p_dist = blt::vec2(std::abs(dist.x()), std::abs(dist.y())); constexpr auto HALF_SIZE = IMAGE_SIZE / 2.0f; if (p_dist.x() < HALF_SIZE && p_dist.y() < HALF_SIZE) { renderer_2d.drawRectangleInternal(blt::make_color(0.9, 0.9, 0.3), {x, y, IMAGE_SIZE + IMAGE_PADDING / 2.0f, IMAGE_SIZE + IMAGE_PADDING / 2.0f}, 10.0f); auto& io = ImGui::GetIO(); if (io.WantCaptureMouse) continue; hovered_fitness = ind.fitness.adjusted_fitness; if (blt::gfx::isKeyPressed(GLFW_KEY_LEFT_SHIFT)) { if (blt::gfx::mousePressedLastFrame()) { std::cout << "Fitness: " << ind.fitness.adjusted_fitness << " " << ind.fitness.raw_fitness << " "; ind.tree.print(program, std::cout, false); std::cout << std::endl; } } else { if (blt::gfx::mousePressedLastFrame() || (blt::gfx::isKeyPressed(GLFW_KEY_F) && blt::gfx::keyPressedLastFrame())) { fitness_values[i] = last_fitness; last_fitness += 1; } } hovered_fitness_value = fitness_values[i]; } auto val = static_cast(ind.fitness.adjusted_fitness); renderer_2d.drawRectangleInternal( blt::make_color(val, val, val), {x, y, IMAGE_SIZE + IMAGE_PADDING / 2.0f, IMAGE_SIZE + IMAGE_PADDING / 2.0f}, 5.0f); renderer_2d.drawRectangleInternal(blt::gfx::render_info_t::make_info(std::to_string(i)), {x, y, IMAGE_SIZE, IMAGE_SIZE}, 15.0f); } //BLT_TRACE("%f, %f", mouse_pos.x(), mouse_pos.y()); camera.update(); camera.update_view(global_matrices); global_matrices.update(); renderer_2d.render(data.width, data.height); } int main() { // reset all fitness values. for (auto& v : fitness_values) v = -1; blt::gfx::init(blt::gfx::window_data{"My Sexy Window", init, update, 1440, 720}.setSyncInterval(1)); global_matrices.cleanup(); resources.cleanup(); renderer_2d.cleanup(); blt::gfx::cleanup(); BLT_END_INTERVAL("Image Test", "Main"); base_image.save("input.png"); full_base_image.save("full_input.png"); auto v = get_fractal_value(base_image); BLT_INFO("Base image values per channel: %lf", v.total); BLT_PRINT_PROFILE("Image Test", blt::PRINT_CYCLES | blt::PRINT_THREAD | blt::PRINT_WALL); BLT_PRINT_PROFILE("Mutation", blt::PRINT_CYCLES | blt::PRINT_THREAD | blt::PRINT_WALL | blt::AVERAGE_HISTORY); is_running = false; program.kill(); if (gp_thread->joinable()) gp_thread->join(); return 0; }