297 lines
11 KiB
C++
297 lines
11 KiB
C++
/*
|
|
* Created by Brett on 28/02/23.
|
|
* Licensed under GNU General Public License V3.0
|
|
* See LICENSE file for license detail
|
|
*/
|
|
|
|
#ifndef BLT_TESTS_MATRIX_H
|
|
#define BLT_TESTS_MATRIX_H
|
|
|
|
#include <blt/math/vectors.h>
|
|
|
|
namespace blt {
|
|
|
|
class mat4x4 {
|
|
protected:
|
|
// 4x4 = 16
|
|
union dataType {
|
|
float single[16];
|
|
float dim[4][4];
|
|
};
|
|
dataType data{};
|
|
|
|
friend mat4x4 operator+(const mat4x4& left, const mat4x4& right);
|
|
|
|
friend mat4x4 operator-(const mat4x4& left, const mat4x4& right);
|
|
|
|
friend mat4x4 operator*(const mat4x4& left, const mat4x4& right);
|
|
|
|
friend mat4x4 operator*(float c, const mat4x4& v);
|
|
|
|
friend mat4x4 operator*(const mat4x4& v, float c);
|
|
|
|
friend mat4x4 operator/(const mat4x4& v, float c);
|
|
|
|
friend mat4x4 operator/(float c, const mat4x4& v);
|
|
|
|
public:
|
|
mat4x4() {
|
|
for (float& i : data.single)
|
|
i = 0;
|
|
// set identity matrix default
|
|
m00(1);
|
|
m11(1);
|
|
m22(1);
|
|
m33(1);
|
|
}
|
|
|
|
mat4x4(const mat4x4& mat) {
|
|
for (int i = 0; i < 16; i++) {
|
|
data.single[i] = mat.data.single[i];
|
|
}
|
|
}
|
|
|
|
explicit mat4x4(const float dat[16]) {
|
|
for (int i = 0; i < 16; i++) {
|
|
data.single[i] = dat[i];
|
|
}
|
|
}
|
|
|
|
inline mat4x4& translate(float x, float y, float z) {
|
|
/**
|
|
* 9.005 Are OpenGL matrices column-major or row-major?
|
|
* For programming purposes, OpenGL matrices are 16-value arrays with base vectors laid out contiguously in memory.
|
|
* The translation components occupy the 13th, 14th, and 15th elements of the 16-element matrix,
|
|
* where indices are numbered from 1 to 16 as described in section 2.11.2 of the OpenGL 2.1 Specification.
|
|
*/
|
|
m03(x);
|
|
m13(y);
|
|
m23(z);
|
|
return *this;
|
|
}
|
|
|
|
inline mat4x4& translate(const vec4& vec) { return translate(vec[0], vec[1], vec[2]); }
|
|
inline mat4x4& translate(const vec3& vec) { return translate(vec[0], vec[1], vec[2]); }
|
|
|
|
inline mat4x4& scale(float x, float y, float z) {
|
|
m00(m00() * x);
|
|
m11(m11() * y);
|
|
m22(m11() * z);
|
|
return *this;
|
|
}
|
|
|
|
inline mat4x4& scale(const vec4& vec) { return scale(vec[0], vec[1], vec[2]); }
|
|
inline mat4x4& scale(const vec3& vec) { return scale(vec[0], vec[1], vec[2]); }
|
|
|
|
[[nodiscard]] mat4x4 transpose() const {
|
|
mat4x4 copy{*this};
|
|
|
|
for (int i = 0; i < 4; i++){
|
|
for (int j = 0; j < 4; j++) {
|
|
copy.m(j, i, m(i, j));
|
|
}
|
|
}
|
|
|
|
return copy;
|
|
}
|
|
|
|
[[nodiscard]] inline float m(int row, int column) const { return data.single[row + column * 4]; };
|
|
|
|
[[nodiscard]] inline float m00() const { return m(0, 0); }
|
|
|
|
[[nodiscard]] inline float m10() const { return m(1, 0); }
|
|
|
|
[[nodiscard]] inline float m20() const { return m(2, 0); }
|
|
|
|
[[nodiscard]] inline float m30() const { return m(3, 0); }
|
|
|
|
[[nodiscard]] inline float m01() const { return m(0, 1); }
|
|
|
|
[[nodiscard]] inline float m11() const { return m(1, 1); }
|
|
|
|
[[nodiscard]] inline float m21() const { return m(2, 1); }
|
|
|
|
[[nodiscard]] inline float m31() const { return m(3, 1); }
|
|
|
|
[[nodiscard]] inline float m02() const { return m(0, 2); }
|
|
|
|
[[nodiscard]] inline float m12() const { return m(1, 2); }
|
|
|
|
[[nodiscard]] inline float m22() const { return m(2, 2); }
|
|
|
|
[[nodiscard]] inline float m32() const { return m(3, 2); }
|
|
|
|
[[nodiscard]] inline float m03() const { return m(0, 3); }
|
|
|
|
[[nodiscard]] inline float m13() const { return m(1, 3); }
|
|
|
|
[[nodiscard]] inline float m23() const { return m(2, 3); }
|
|
|
|
[[nodiscard]] inline float m33() const { return m(3, 3); }
|
|
|
|
inline float m(int row, int column, float value) { return data.single[row + column * 4] = value; };
|
|
|
|
inline float m00(float d) { return m(0, 0, d); }
|
|
|
|
inline float m10(float d) { return m(1, 0, d); }
|
|
|
|
inline float m20(float d) { return m(2, 0, d); }
|
|
|
|
inline float m30(float d) { return m(3, 0, d); }
|
|
|
|
inline float m01(float d) { return m(0, 1, d); }
|
|
|
|
inline float m11(float d) { return m(1, 1, d); }
|
|
|
|
inline float m21(float d) { return m(2, 1, d); }
|
|
|
|
inline float m31(float d) { return m(3, 1, d); }
|
|
|
|
inline float m02(float d) { return m(0, 2, d); }
|
|
|
|
inline float m12(float d) { return m(1, 2, d); }
|
|
|
|
inline float m22(float d) { return m(2, 2, d); }
|
|
|
|
inline float m32(float d) { return m(3, 2, d); }
|
|
|
|
inline float m03(float d) { return m(0, 3, d); }
|
|
|
|
inline float m13(float d) { return m(1, 3, d); }
|
|
|
|
inline float m23(float d) { return m(2, 3, d); }
|
|
|
|
inline float m33(float d) { return m(3, 3, d); }
|
|
|
|
[[nodiscard]] float determinant() const {
|
|
return m00() * (m11() * m22() * m33() + m12() * m23() * m31() + m13() * m21() * m32()
|
|
- m31() * m22() * m13() - m32() * m23() * m11() - m33() * m21() * m12())
|
|
- m10() * (m01() * m22() * m33() + m02() * m23() * m31() + m03() * m21() * m32()
|
|
- m31() * m32() * m03() - m32() * m23() * m01() - m33() * m21() * m02())
|
|
+ m20() * (m01() * m12() * m33() + m02() * m13() * m31() + m03() * m11() * m32()
|
|
- m31() * m12() * m03() - m32() * m13() * m01() - m33() * m11() * m02())
|
|
- m30() * (m01() * m12() * m23() + m02() * m13() * m21() + m03() * m11() * m22()
|
|
- m21() * m12() * m03() - m22() * m13() * m01() - m23() * m11() * m02());
|
|
}
|
|
|
|
inline float* ptr() { return data.single; }
|
|
};
|
|
|
|
// adds the two mat4x4 left and right
|
|
inline mat4x4 operator+(const mat4x4& left, const mat4x4& right) {
|
|
float data[16];
|
|
for (int i = 0; i < 16; i++)
|
|
data[i] = left.data.single[i] + right.data.single[i];
|
|
return mat4x4{data};
|
|
}
|
|
|
|
// subtracts the right mat4x4 from the left.
|
|
inline mat4x4 operator-(const mat4x4& left, const mat4x4& right) {
|
|
float data[16];
|
|
for (int i = 0; i < 16; i++)
|
|
data[i] = left.data.single[i] - right.data.single[i];
|
|
return mat4x4{data};
|
|
}
|
|
|
|
// since matrices are made identity by default, we need to create the result collector matrix without identity
|
|
// otherwise the diagonal will be 1 off and cause weird results (see black screen issue)
|
|
constexpr float emptyMatrix[16] = {0, 0, 0, 0,
|
|
0, 0, 0, 0,
|
|
0, 0, 0, 0,
|
|
0, 0, 0, 0};
|
|
|
|
// multiples the left with the right
|
|
inline mat4x4 operator*(const mat4x4& left, const mat4x4& right) {
|
|
mat4x4 mat{emptyMatrix};
|
|
|
|
// TODO: check avx with this??
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
for (int k = 0; k < 4; k++) {
|
|
mat.m(i, j, mat.m(i, j) + left.m(i, k) * right.m(k, j));
|
|
}
|
|
}
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
// multiplies the const c with each element in the mat4x4 v
|
|
inline mat4x4 operator*(float c, const mat4x4& v) {
|
|
mat4x4 mat{};
|
|
|
|
for (int i = 0; i < 16; i++) {
|
|
mat.data.single[i] = c * v.data.single[i];
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
// same as above but for right sided constants
|
|
inline mat4x4 operator*(const mat4x4& v, float c) {
|
|
mat4x4 mat{};
|
|
|
|
for (int i = 0; i < 16; i++) {
|
|
mat.data.single[i] = v.data.single[i] * c;
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
// divides the mat4x4 by the constant c
|
|
inline mat4x4 operator/(const mat4x4& v, float c) {
|
|
mat4x4 mat{};
|
|
|
|
for (int i = 0; i < 16; i++) {
|
|
mat.data.single[i] = v.data.single[i] / c;
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
// divides each element in the mat4x4 by over the constant
|
|
inline mat4x4 operator/(float c, const mat4x4& v) {
|
|
mat4x4 mat{};
|
|
|
|
for (int i = 0; i < 16; i++) {
|
|
mat.data.single[i] = c / v.data.single[i];
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
// https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/building-basic-perspective-projection-matrix.html
|
|
// https://ogldev.org/www/tutorial12/tutorial12.html
|
|
static inline mat4x4 perspective(float fov, float aspect_ratio, float near, float far){
|
|
mat4x4 perspectiveMat4x4 {emptyMatrix};
|
|
|
|
float oneOverNearMFar = 1.0f / (near - far);
|
|
|
|
float halfTan = tanf(fov * 0.5f * (float)M_PI / 180.0f);
|
|
perspectiveMat4x4.m00(float(1.0 / (aspect_ratio * halfTan)));
|
|
perspectiveMat4x4.m11(float(1.0 / halfTan));
|
|
perspectiveMat4x4.m22(float(-((far + near) / (far - near))));
|
|
perspectiveMat4x4.m32(-1);
|
|
perspectiveMat4x4.m23(float(-((2 * near * far) / (far - near))));
|
|
|
|
return perspectiveMat4x4;
|
|
}
|
|
|
|
static inline mat4x4 ortho(float left, float right, float top, float bottom, float near, float far){
|
|
mat4x4 perspectiveMat4x4 {emptyMatrix};
|
|
|
|
perspectiveMat4x4.m00(2/(right - left));
|
|
perspectiveMat4x4.m11(2/(top-bottom));
|
|
perspectiveMat4x4.m22(2/(far-near));
|
|
perspectiveMat4x4.m33(1);
|
|
perspectiveMat4x4.m03(-(right + left) / (right - left));
|
|
perspectiveMat4x4.m13(-(top + bottom) / (top - bottom));
|
|
perspectiveMat4x4.m23(-(far + near) / (far - near));
|
|
|
|
return perspectiveMat4x4;
|
|
}
|
|
|
|
}
|
|
|
|
#endif //BLT_TESTS_MATRIX_H
|