COSC-3P93-Project/Step 2/src/world.cpp

141 lines
6.1 KiB
C++
Raw Normal View History

2022-10-16 19:24:37 -04:00
/*
* Created by Brett Terpstra 6920201 on 16/10/22.
* Copyright (c) 2022 Brett Terpstra. All Rights Reserved.
*/
#include <world.h>
2022-10-17 19:16:10 -04:00
#include <raytracing.h>
2022-10-16 19:24:37 -04:00
namespace Raytracing {
World::~World() {
2022-10-17 19:16:10 -04:00
for (auto* p: objects)
delete (p);
for (const auto& p: materials)
delete (p.second);
2022-10-16 19:24:37 -04:00
}
2022-10-17 19:16:10 -04:00
HitData SphereObject::checkIfHit(const Ray& ray, PRECISION_TYPE min, PRECISION_TYPE max) const {
2022-10-17 00:29:34 -04:00
PRECISION_TYPE radiusSquared = radius * radius;
// move the ray to be with respects to the sphere
vec4 RayWRTSphere = ray.getStartingPoint() - position;
// now determine the discriminant for the quadratic formula for the function of line sphere intercept
PRECISION_TYPE a = ray.getDirection().lengthSquared();
PRECISION_TYPE b = Raytracing::vec4::dot(RayWRTSphere, ray.getDirection());
PRECISION_TYPE c = RayWRTSphere.lengthSquared() - radiusSquared;
// > 0: the hit has two roots, meaning we hit both sides of the sphere
// = 0: the ray has one root, we hit the edge of the sphere
// < 0: ray isn't inside the sphere.
PRECISION_TYPE discriminant = b * b - (a * c);
// < 0: ray isn't inside the sphere. Don't need to bother calculating the roots.
if (discriminant < 0)
return {false, vec4(), vec4(), 0};
// now we have to find the root which exists inside our range [min,max]
auto root = (-b - std::sqrt(discriminant)) / a;
// if the first root isn't in our range
if (root < min || root > max) {
// check the second root
root = (-b + std::sqrt(discriminant)) / a;
if (root < min || root > max) {
// if the second isn't in the range then we also must return false.
return {false, vec4(), vec4(), 0};
}
}
// the hit point is where the ray is when extended to the root
auto RayAtRoot = ray.along(root);
// The normal of a sphere is just the point of the hit minus the center position
auto normal = (RayAtRoot - position).normalize();
/*if (Raytracing::vec4::dot(ray.getDirection(), normal) > 0.0) {
tlog << "ray inside sphere\n";
} else
tlog << "ray outside sphere\n";
*/
return {true, RayAtRoot, normal, root};
}
2022-10-17 19:16:10 -04:00
std::pair<HitData, Object*> World::checkIfHit(const Ray& ray, PRECISION_TYPE min, PRECISION_TYPE max) const {
auto hResult = HitData{false, vec4(), vec4(), max};
Object* objPtr = nullptr;
for (auto* obj: objects) {
2022-10-16 19:24:37 -04:00
// check up to the point of the last closest hit,
// will give the closest object's hit result
auto cResult = obj->checkIfHit(ray, min, hResult.length);
2022-10-17 19:16:10 -04:00
if (cResult.hit) {
2022-10-16 19:24:37 -04:00
hResult = cResult;
2022-10-17 19:16:10 -04:00
objPtr = obj;
}
}
return {hResult, objPtr};
}
ScatterResults DiffuseMaterial::scatter(const Ray& ray, const HitData& hitData) const {
vec4 newRay = hitData.normal + Raytracing::Raycaster::randomUnitVector().normalize();
// rays that are close to zero are liable to floating point precision errors
if (newRay.x() < EPSILON && newRay.y() < EPSILON && newRay.z() < EPSILON && newRay.w() < EPSILON)
newRay = hitData.normal;
return {true, Ray{hitData.hitPoint, newRay}, getBaseColor()};
}
ScatterResults MetalMaterial::scatter(const Ray& ray, const HitData& hitData) const {
// create a ray reflection
vec4 newRay = reflect(ray.getDirection().normalize(), hitData.normal);
// make sure our reflected ray is outside the sphere and doesn't point inwards
bool shouldReflect = vec4::dot(newRay, hitData.normal) > 0;
return {shouldReflect, Ray{hitData.hitPoint, newRay}, getBaseColor()};
}
ScatterResults BrushedMetalMaterial::scatter(const Ray& ray, const HitData& hitData) const {
// create a ray reflection
vec4 newRay = reflect(ray.getDirection().normalize(), hitData.normal);
// make sure our reflected ray is outside the sphere and doesn't point inwards
bool shouldReflect = vec4::dot(newRay, hitData.normal) > 0;
return {shouldReflect, Ray{hitData.hitPoint, newRay + Raycaster::randomUnitVector() * fuzzyness}, getBaseColor()};
}
HitData TriangleObject::checkIfHit(const Ray& ray, PRECISION_TYPE min, PRECISION_TYPE max) const {
// MöllerTrumbore intersection algorithm
vec4 edge1, edge2, h, s, q;
PRECISION_TYPE a, f, u, v;
edge1 = (theTriangle.vertex2 + position) - (theTriangle.vertex1 + position);
edge2 = (theTriangle.vertex3 + position) - (theTriangle.vertex1 + position);
h = vec4::cross(ray.getDirection(), edge2);
a = vec4::dot(edge1, h);
if (a > -EPSILON && a < EPSILON)
return {false, vec4(), vec4(), 0}; //parallel to triangle
f = 1.0 / a;
s = ray.getStartingPoint() - (theTriangle.vertex1 + position);
u = f * vec4::dot(s, h);
if (u < 0.0 || u > 1.0)
return {false, vec4(), vec4(), 0};
q = vec4::cross(s, edge1);
v = f * vec4::dot(ray.getDirection(), q);
if (v < 0.0 || u + v > 1.0)
return {false, vec4(), vec4(), 0};
// At this stage we can compute t to find out where the intersection point is on the line.
PRECISION_TYPE t = f * vec4::dot(edge2, q);
if (t > EPSILON) {
// ray intersects
vec4 rayIntersectionPoint = ray.along(t);
vec4 normal;
if (theTriangle.hasNormals) // TODO: deal with n2 and n3
normal = theTriangle.normal1;
else {
// standard points to normal algorithm but using already computed edges
normal = vec4{edge1.y() * edge2.z(), edge1.z() * edge2.x(), edge1.x() * edge2.y()} -
vec4{edge1.z() * edge2.y(), edge1.x() * edge2.z(), edge1.y() * edge2.x()};
}
return {true, rayIntersectionPoint, normal, t};
2022-10-16 19:24:37 -04:00
}
2022-10-17 19:16:10 -04:00
return {false, vec4(), vec4(), 0};
2022-10-16 19:24:37 -04:00
}
}