2022-10-16 19:24:37 -04:00
|
|
|
|
/*
|
|
|
|
|
* Created by Brett Terpstra 6920201 on 16/10/22.
|
|
|
|
|
* Copyright (c) 2022 Brett Terpstra. All Rights Reserved.
|
|
|
|
|
*/
|
|
|
|
|
#include <world.h>
|
2022-10-17 19:16:10 -04:00
|
|
|
|
#include <raytracing.h>
|
2022-10-16 19:24:37 -04:00
|
|
|
|
|
|
|
|
|
namespace Raytracing {
|
|
|
|
|
|
|
|
|
|
World::~World() {
|
2022-10-17 19:16:10 -04:00
|
|
|
|
for (auto* p: objects)
|
|
|
|
|
delete (p);
|
|
|
|
|
for (const auto& p: materials)
|
|
|
|
|
delete (p.second);
|
2022-10-16 19:24:37 -04:00
|
|
|
|
}
|
|
|
|
|
|
2022-10-17 19:16:10 -04:00
|
|
|
|
HitData SphereObject::checkIfHit(const Ray& ray, PRECISION_TYPE min, PRECISION_TYPE max) const {
|
2022-10-17 00:29:34 -04:00
|
|
|
|
PRECISION_TYPE radiusSquared = radius * radius;
|
|
|
|
|
// move the ray to be with respects to the sphere
|
|
|
|
|
vec4 RayWRTSphere = ray.getStartingPoint() - position;
|
|
|
|
|
// now determine the discriminant for the quadratic formula for the function of line sphere intercept
|
|
|
|
|
PRECISION_TYPE a = ray.getDirection().lengthSquared();
|
|
|
|
|
PRECISION_TYPE b = Raytracing::vec4::dot(RayWRTSphere, ray.getDirection());
|
|
|
|
|
PRECISION_TYPE c = RayWRTSphere.lengthSquared() - radiusSquared;
|
|
|
|
|
// > 0: the hit has two roots, meaning we hit both sides of the sphere
|
|
|
|
|
// = 0: the ray has one root, we hit the edge of the sphere
|
|
|
|
|
// < 0: ray isn't inside the sphere.
|
|
|
|
|
PRECISION_TYPE discriminant = b * b - (a * c);
|
|
|
|
|
|
|
|
|
|
// < 0: ray isn't inside the sphere. Don't need to bother calculating the roots.
|
|
|
|
|
if (discriminant < 0)
|
|
|
|
|
return {false, vec4(), vec4(), 0};
|
|
|
|
|
|
|
|
|
|
// now we have to find the root which exists inside our range [min,max]
|
|
|
|
|
auto root = (-b - std::sqrt(discriminant)) / a;
|
|
|
|
|
// if the first root isn't in our range
|
|
|
|
|
if (root < min || root > max) {
|
|
|
|
|
// check the second root
|
|
|
|
|
root = (-b + std::sqrt(discriminant)) / a;
|
|
|
|
|
if (root < min || root > max) {
|
|
|
|
|
// if the second isn't in the range then we also must return false.
|
|
|
|
|
return {false, vec4(), vec4(), 0};
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// the hit point is where the ray is when extended to the root
|
|
|
|
|
auto RayAtRoot = ray.along(root);
|
|
|
|
|
// The normal of a sphere is just the point of the hit minus the center position
|
|
|
|
|
auto normal = (RayAtRoot - position).normalize();
|
|
|
|
|
|
|
|
|
|
/*if (Raytracing::vec4::dot(ray.getDirection(), normal) > 0.0) {
|
|
|
|
|
tlog << "ray inside sphere\n";
|
|
|
|
|
} else
|
|
|
|
|
tlog << "ray outside sphere\n";
|
|
|
|
|
*/
|
|
|
|
|
return {true, RayAtRoot, normal, root};
|
|
|
|
|
}
|
|
|
|
|
|
2022-10-17 19:16:10 -04:00
|
|
|
|
std::pair<HitData, Object*> World::checkIfHit(const Ray& ray, PRECISION_TYPE min, PRECISION_TYPE max) const {
|
|
|
|
|
auto hResult = HitData{false, vec4(), vec4(), max};
|
|
|
|
|
Object* objPtr = nullptr;
|
|
|
|
|
for (auto* obj: objects) {
|
2022-10-16 19:24:37 -04:00
|
|
|
|
// check up to the point of the last closest hit,
|
|
|
|
|
// will give the closest object's hit result
|
|
|
|
|
auto cResult = obj->checkIfHit(ray, min, hResult.length);
|
2022-10-17 19:16:10 -04:00
|
|
|
|
if (cResult.hit) {
|
2022-10-16 19:24:37 -04:00
|
|
|
|
hResult = cResult;
|
2022-10-17 19:16:10 -04:00
|
|
|
|
objPtr = obj;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return {hResult, objPtr};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ScatterResults DiffuseMaterial::scatter(const Ray& ray, const HitData& hitData) const {
|
|
|
|
|
vec4 newRay = hitData.normal + Raytracing::Raycaster::randomUnitVector().normalize();
|
|
|
|
|
|
|
|
|
|
// rays that are close to zero are liable to floating point precision errors
|
|
|
|
|
if (newRay.x() < EPSILON && newRay.y() < EPSILON && newRay.z() < EPSILON && newRay.w() < EPSILON)
|
|
|
|
|
newRay = hitData.normal;
|
|
|
|
|
|
|
|
|
|
return {true, Ray{hitData.hitPoint, newRay}, getBaseColor()};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ScatterResults MetalMaterial::scatter(const Ray& ray, const HitData& hitData) const {
|
|
|
|
|
// create a ray reflection
|
|
|
|
|
vec4 newRay = reflect(ray.getDirection().normalize(), hitData.normal);
|
|
|
|
|
// make sure our reflected ray is outside the sphere and doesn't point inwards
|
|
|
|
|
bool shouldReflect = vec4::dot(newRay, hitData.normal) > 0;
|
|
|
|
|
return {shouldReflect, Ray{hitData.hitPoint, newRay}, getBaseColor()};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ScatterResults BrushedMetalMaterial::scatter(const Ray& ray, const HitData& hitData) const {
|
|
|
|
|
// create a ray reflection
|
|
|
|
|
vec4 newRay = reflect(ray.getDirection().normalize(), hitData.normal);
|
|
|
|
|
// make sure our reflected ray is outside the sphere and doesn't point inwards
|
|
|
|
|
bool shouldReflect = vec4::dot(newRay, hitData.normal) > 0;
|
|
|
|
|
return {shouldReflect, Ray{hitData.hitPoint, newRay + Raycaster::randomUnitVector() * fuzzyness}, getBaseColor()};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
HitData TriangleObject::checkIfHit(const Ray& ray, PRECISION_TYPE min, PRECISION_TYPE max) const {
|
|
|
|
|
// Möller–Trumbore intersection algorithm
|
|
|
|
|
vec4 edge1, edge2, h, s, q;
|
|
|
|
|
PRECISION_TYPE a, f, u, v;
|
|
|
|
|
edge1 = (theTriangle.vertex2 + position) - (theTriangle.vertex1 + position);
|
|
|
|
|
edge2 = (theTriangle.vertex3 + position) - (theTriangle.vertex1 + position);
|
|
|
|
|
|
|
|
|
|
h = vec4::cross(ray.getDirection(), edge2);
|
|
|
|
|
a = vec4::dot(edge1, h);
|
|
|
|
|
|
|
|
|
|
if (a > -EPSILON && a < EPSILON)
|
|
|
|
|
return {false, vec4(), vec4(), 0}; //parallel to triangle
|
|
|
|
|
|
|
|
|
|
f = 1.0 / a;
|
|
|
|
|
s = ray.getStartingPoint() - (theTriangle.vertex1 + position);
|
|
|
|
|
u = f * vec4::dot(s, h);
|
|
|
|
|
|
|
|
|
|
if (u < 0.0 || u > 1.0)
|
|
|
|
|
return {false, vec4(), vec4(), 0};
|
|
|
|
|
|
|
|
|
|
q = vec4::cross(s, edge1);
|
|
|
|
|
v = f * vec4::dot(ray.getDirection(), q);
|
|
|
|
|
if (v < 0.0 || u + v > 1.0)
|
|
|
|
|
return {false, vec4(), vec4(), 0};
|
|
|
|
|
|
|
|
|
|
// At this stage we can compute t to find out where the intersection point is on the line.
|
|
|
|
|
PRECISION_TYPE t = f * vec4::dot(edge2, q);
|
|
|
|
|
if (t > EPSILON) {
|
|
|
|
|
// ray intersects
|
|
|
|
|
vec4 rayIntersectionPoint = ray.along(t);
|
|
|
|
|
vec4 normal;
|
|
|
|
|
if (theTriangle.hasNormals) // TODO: deal with n2 and n3
|
|
|
|
|
normal = theTriangle.normal1;
|
|
|
|
|
else {
|
|
|
|
|
// standard points to normal algorithm but using already computed edges
|
|
|
|
|
normal = vec4{edge1.y() * edge2.z(), edge1.z() * edge2.x(), edge1.x() * edge2.y()} -
|
|
|
|
|
vec4{edge1.z() * edge2.y(), edge1.x() * edge2.z(), edge1.y() * edge2.x()};
|
|
|
|
|
}
|
|
|
|
|
return {true, rayIntersectionPoint, normal, t};
|
2022-10-16 19:24:37 -04:00
|
|
|
|
}
|
2022-10-17 19:16:10 -04:00
|
|
|
|
return {false, vec4(), vec4(), 0};
|
2022-10-16 19:24:37 -04:00
|
|
|
|
}
|
|
|
|
|
}
|