COSC-3P93-Project/Step 3/resources/opencl/raytracer.cl

246 lines
9.1 KiB
Common Lisp
Raw Normal View History

2022-12-10 14:25:09 -05:00
// these values get dynamically defined by the preprocessor
#define maxTriangleCount 336
#define objectCount 6
#define imageWidth 800
#define imageHeight 600
#define imageOrigin (float4)(0,0,0,0)
#define horizontalAxis (float4)(0,0,0,0)
#define verticalAxis (float4)(0,0,0,0)
#define cameraPosition (float4)(0,0,0,0)
#define MAX_DEPTH 500
#define MAX_PER_PIXEL 500
struct Triangle {
float4 vertex1, vertex2, vertex3;
float4 normal1, normal2, normal3;
float4 uv1, uv2, uv3;
};
struct TriangleArray {
unsigned long size;
struct Triangle triangles[maxTriangleCount];
};
struct Object {
float4 min;
float4 max;
float4 position;
struct TriangleArray triangleArray;
};
struct Ray {
// the starting point for our ray
float4 start;
// and the direction it is currently traveling
float4 direction;
float4 inverseDirection;
};
float4 along(struct Ray ray, float length) {
return ray.start + length * ray.direction;
}
float magnitude(float4 vec){
return sqrt(vec.x * vec.x + vec.y * vec.y + vec.z * vec.z + vec.w * vec.w);
}
struct HitData {
// the hit point on the object
float4 hitPoint;
// the normal of that hit point
float4 normal;
// the length of the vector from its origin in its direction.
float length;
// Texture UV Coords.
float u, v;
};
struct ScatterResults {
// the new ray to be cast if scattered
struct Ray newRay;
// the color of the material
float4 attenuationColor;
};
// as close to a 1 to 1 copy from the cpu ray tracer
bool checkForTriangleIntersection(struct HitData* data, struct Triangle theTriangle, float4 position, struct Ray ray, float min, float max) {
const float EPSILON = 0.0000001f;
float4 edge1, edge2, s, h, q;
float a, f, u, v;
edge1 = (theTriangle.vertex2 + position) - (theTriangle.vertex1 + position);
edge2 = (theTriangle.vertex3 + position) - (theTriangle.vertex1 + position);
h = cross(ray.direction, edge2);
a = dot(edge1, h);
if (a > -EPSILON && a < EPSILON) {
return false;
}
f = 1.0f / a;
s = ray.start - (theTriangle.vertex1 + position);
u = f * dot(s, h);
if (u < 0.0f || u > 1.0f) {
return false;
}
q = cross(s, edge1);
v = f * dot(ray.direction, q);
if (v < 0.0f || u + v > 1.0f) {
return false;
}
// At this stage we can compute t to find out where the intersection point is on the line.
float t = f * dot(edge2, q);
// keep t in reasonable bounds, ensuring we respect depth
if (t > EPSILON && t >= min && t <= max) {
// ray intersects
float4 rayIntersectionPoint = along(ray, t);
float4 normal = theTriangle.normal1;
// calculate triangle berry centric coords
// first we need the vector that runs between the vertex and the intersection point for all three vertices
// we must subtract the position of the triangle from the intersection point because this calc must happen in triangle space not world space.
// you won't believe the time it took me to figure this out, since the U coord was correct but the V coord was always 1.
float4 vertex1ToIntersect = theTriangle.vertex1 - (rayIntersectionPoint - position);
float4 vertex2ToIntersect = theTriangle.vertex2 - (rayIntersectionPoint - position);
float4 vertex3ToIntersect = theTriangle.vertex3 - (rayIntersectionPoint - position);
// the magnitude of the cross product of two vectors is double the area formed by the triangle of their intersection.
float4 fullAreaVec = cross(theTriangle.vertex1 - theTriangle.vertex2, theTriangle.vertex1 - theTriangle.vertex3);
float4 areaVert1Vec = cross(vertex2ToIntersect, vertex3ToIntersect);
float4 areaVert2Vec = cross(vertex3ToIntersect, vertex1ToIntersect);
float4 areaVert3Vec = cross(vertex1ToIntersect, vertex2ToIntersect);
float fullArea = 1.0 / magnitude(fullAreaVec);
// scale the area of sub triangles to be proportion to the area of the triangle
float areaVert1 = magnitude(areaVert1Vec) * fullArea;
float areaVert2 = magnitude(areaVert2Vec) * fullArea;
float areaVert3 = magnitude(areaVert3Vec) * fullArea;
// since we are calculating UV coords, the hard interpolation part is already done.
// so use said calculation to determine the overall normal based on the 3 individual vertexes
normal = theTriangle.normal1 * areaVert1 + theTriangle.normal2 * areaVert2 + theTriangle.normal3 * areaVert3;
// that area is how much each UV factors into the final UV coord
// since the z and w component isn't used it's best to do this individually. (Where's that TODO on lower order vectors!!!)
float t_u = theTriangle.uv1.x * areaVert1 + theTriangle.uv2.x * areaVert2 + theTriangle.uv3.x * areaVert3;
float t_v = theTriangle.uv1.y * areaVert1 + theTriangle.uv2.y * areaVert2 + theTriangle.uv3.y * areaVert3;
data->hitPoint = rayIntersectionPoint;
data->normal = normal;
data->length = t;
data->u = t_u;
data->v = t_v;
return true;
}
return false;
}
// // // reads one unsigned long of data from the objects buffer.
// unsigned long getUnsignedLong(__global unsigned char* buffer, unsigned long* currentByte){
// long val = *((global unsigned long*)(buffer));
// *currentByte += sizeof(unsigned long);
// return val;
// }
// // // reads one unsigned long of data from the objects buffer.
float4 getVector(__global unsigned char* buffer, unsigned long* currentByte){
float4 val = *((global float4*)(buffer));
*currentByte += sizeof(float4);
return val;
}
struct Ray projectRay(float x, float y){
float transformedX = (x / (imageWidth - 1));
float transformedY = (y / (imageHeight - 1));
struct Ray ray;
ray.start = cameraPosition;
ray.direction = imageOrigin + transformedX * horizontalAxis + transformedY * verticalAxis - cameraPosition;
ray.inverseDirection = 1.0f / ray.direction;
return ray;
}
bool checkForWorldIntersection(struct HitData* data, __global struct Object* objects, struct Ray ray, float min, float max){
data->length = max;
bool hit = false;
// brute-force check on all the objects in the world.
for (int i = 0; i < objectCount; i++){
struct TriangleArray triangleArray = objects[i].triangleArray;
for (int j = 0; j < triangleArray.size; j++){
if (checkForTriangleIntersection(data, triangleArray.triangles[j], objects[i].position, ray, min, data->length)){
hit = true;
}
}
}
return hit;
}
bool scatter(struct ScatterResults* results, __global unsigned char* randoms, struct Ray ray, struct HitData data){
const float EPSILON = 0.0000001f;
int x = get_global_id(0);
unsigned long cb = x * sizeof(float4);
float4 newRay = data.normal + getVector(randoms, &cb);
// rays that are close to zero are liable to floating point precision errors
if (newRay.x < EPSILON && newRay.y < EPSILON && newRay.z < EPSILON && newRay.w < EPSILON)
newRay = data.normal;
struct Ray nRay;
nRay.start = data.hitPoint;
nRay.direction = newRay;
nRay.inverseDirection = 1/nRay.direction;
results->newRay = nRay;
results->attenuationColor = (float4)(1.0f, 0.0f, 0.0f, 1.0f);
return true;
}
float4 raycastI(__global unsigned char* randoms, __global struct Object* objects, struct Ray ray){
struct Ray localRay = ray;
float4 color = (float4)(1.0f, 1.0f, 1.0f, 1.0f);
for (int i = 0; i < MAX_DEPTH; i++){
struct HitData hit;
if (checkForWorldIntersection(&hit, objects, ray, 0.001f, 100000.0f)){
color = (float4)(1.0f, 0.0f, 0.0f, 1.0f);
}
/*if (hit.hit){
struct ScatterResults results = scatter(randoms, localRay, hit);
if (results.scattered){
color = color * results.attenuationColor;
localRay = results.newRay;
} else {
color = (float4)(0.0,0.0,0.0,0.0);
break;
}
} else {
// since we didn't hit, we hit the sky.
color = color * (float4)(0.5, 0.7, 1.0, 1.0);
// if we don't hit we cannot keep looping.
break;
}*/
}
return color;
}
__kernel void raycast(__write_only image2d_t outputImage, __global struct Object* objects, __global unsigned char* randoms) {
unsigned long currentByte = 0;
int x = get_global_id(0);
unsigned long cb = x * sizeof(float4);
float4 randomVector = getVector(randoms, &cb);
int y = get_global_id(1);
float4 color = (float4)(0.0);
//for (int i = 0; i < MAX_PER_PIXEL; i++){
color = color + raycastI(randoms, objects, projectRay(x + randomVector.x, y + randomVector.z));
//}
float scaleFactor = 1.0 / MAX_PER_PIXEL;
write_imagef(outputImage, (int2)(x, y), (float4)(sqrt(color.x * scaleFactor), sqrt(color.y * scaleFactor), sqrt(color.z * scaleFactor), 1.0f));
//write_imagef(outputImage, (int2)(x, y), (float4)(color.x, color.y, color.z, 100000.0f));
}