COSC-3P93-Project/Step 3/include/engine/raytracing.h

234 lines
9.2 KiB
C
Raw Normal View History

2022-10-20 11:30:15 -04:00
/*
* Created by Brett Terpstra 6920201 on 16/10/22.
* Copyright (c) 2022 Brett Terpstra. All Rights Reserved.
*
* The general class for all things raytracing!
*/
#ifndef STEP_2_RAYTRACING_H
#define STEP_2_RAYTRACING_H
#include "engine/math/vectors.h"
#include "engine/image/image.h"
#include "engine/util/parser.h"
#include "world.h"
2022-10-20 11:30:15 -04:00
#include <utility>
#include <mutex>
#include <thread>
2022-10-25 01:06:26 -04:00
#include <queue>
2022-10-20 11:30:15 -04:00
namespace Raytracing {
class Camera {
private:
/* Image details */
const Image image;
const PRECISION_TYPE aspectRatio;
/* Camera details */
PRECISION_TYPE viewportHeight;
PRECISION_TYPE viewportWidth;
PRECISION_TYPE focalLength = 1.0;
const PRECISION_TYPE NEAR_PLANE = 0.1;
const PRECISION_TYPE FAR_PLANE = 500;
PRECISION_TYPE tanFovHalf;
PRECISION_TYPE frustumLength;
2022-10-20 11:30:15 -04:00
Vec4 position{0, 0, 0};
Vec4 horizontalAxis;
Vec4 verticalAxis;
Vec4 imageOrigin;
public:
Camera(PRECISION_TYPE fov, const Image& image): image(image),
aspectRatio(double(image.getWidth()) / double(image.getHeight())) {
// scale the viewport height based on the camera's FOV
tanFovHalf = tan(degreeeToRadian(fov) / 2);
viewportHeight = (2.0 * tanFovHalf);
2022-10-20 11:30:15 -04:00
// with must respect the aspect ratio of the image, otherwise we'd get funky results
viewportWidth = (aspectRatio * viewportHeight);
frustumLength = FAR_PLANE - NEAR_PLANE;
2022-10-20 11:30:15 -04:00
// horizontal direction from the camera. used to translate the camera
horizontalAxis = (Vec4{viewportWidth, 0, 0, 0});
// virtual direction, also used to translate the camera
verticalAxis = (Vec4{0, viewportHeight, 0, 0});
// lower left of the camera's view port. used to project our vectors from image space to world space
imageOrigin = (position - horizontalAxis / 2 - verticalAxis / 2 - Vec4(0, 0, focalLength, 0));
tlog << viewportHeight << "\n";
tlog << viewportWidth << "\n";
tlog << "\n";
tlog << horizontalAxis << "\n";
tlog << verticalAxis << "\n";
tlog << imageOrigin << "\n";
}
Ray projectRay(PRECISION_TYPE x, PRECISION_TYPE y);
// makes the camera look at the lookatpos from the position p, with respects to the up direction up. (set to 0,1,0)
void lookAt(const Vec4& pos, const Vec4& lookAtPos, const Vec4& up);
void setPosition(const Vec4& pos) { this->position = pos; }
void setRotation(PRECISION_TYPE yaw, PRECISION_TYPE pitch, PRECISION_TYPE roll);
[[nodiscard]] Mat4x4 project() const {
Mat4x4 project;
// this should be all it takes to create a mostly correct projection matrix
project.m00(float(1.0 / (aspectRatio * tanFovHalf)));
project.m11(float(1.0 / tanFovHalf));
project.m22(float(-((FAR_PLANE + NEAR_PLANE) / frustumLength)));
project.m23(-1);
project.m32(float(-((2 * NEAR_PLANE * FAR_PLANE) / frustumLength)));
//project.m33(0);
return project;
}
Mat4x4 view(const Vec4& lookAtPos, const Vec4& up){
Mat4x4 view;
auto w = (position - lookAtPos).normalize(); // forward
auto u = (Vec4::cross(up, w)).normalize(); // right
auto v = Vec4::cross(w, u); // up
view.m00(float(w.x()));
view.m01(float(w.y()));
view.m02(float(w.z()));
view.m03(float(w.w()));
view.m10(float(u.x()));
view.m11(float(u.y()));
view.m12(float(u.z()));
view.m13(float(u.w()));
view.m20(float(v.x()));
view.m21(float(v.y()));
view.m22(float(v.z()));
view.m23(float(v.w()));
// view matrix are inverted, dot product to simulate translate matrix multiplication
view.m30(-float(Vec4::dot(u, position)));
view.m31(-float(Vec4::dot(v, position)));
view.m32(-float(Vec4::dot(w, position)));
view.m33(1);
return view;
}
Mat4x4 view(PRECISION_TYPE yaw, PRECISION_TYPE pitch) {
Mat4x4 view;
pitch = degreeeToRadian(pitch);
yaw = degreeeToRadian(yaw);
PRECISION_TYPE cosPitch = std::cos(pitch);
PRECISION_TYPE cosYaw = std::cos(yaw);
PRECISION_TYPE sinPitch = std::sin(pitch);
PRECISION_TYPE sinYaw = std::sin(yaw);
auto x = Vec4{cosYaw, 0, -sinYaw}; // forward
auto y = Vec4{sinYaw * sinPitch, cosPitch, cosYaw * sinPitch}; // right
auto z = Vec4{sinYaw * cosPitch, -sinPitch, cosPitch * cosYaw}; // up
view.m00(float(x.x()));
view.m01(float(x.y()));
view.m02(float(x.z()));
view.m03(float(x.w()));
view.m10(float(y.x()));
view.m11(float(y.y()));
view.m12(float(y.z()));
view.m13(float(y.w()));
view.m20(float(z.x()));
view.m21(float(z.y()));
view.m22(float(z.z()));
view.m23(float(z.w()));
// view matrix are inverted, dot product to simulate translate matrix multiplication
view.m30(-float(Vec4::dot(x, position)));
view.m31(-float(Vec4::dot(y, position)));
view.m32(-float(Vec4::dot(z, position)));
view.m33(1);
return view;
}
[[nodiscard]] inline Vec4 getPosition() const {return position;};
2022-10-20 11:30:15 -04:00
};
static Random rnd{-1, 1};
class Raycaster {
private:
int maxBounceDepth = 50;
int raysPerPixel = 50;
2022-10-20 11:30:15 -04:00
Camera& camera;
Image& image;
World& world;
std::vector<std::unique_ptr<std::thread>> executors {};
// is the raytracer still running?
bool stillRunning = true;
unsigned int finishedThreads = 0;
unsigned int system_threads = std::thread::hardware_concurrency();
// yes this is actually the only sync we need between the threads
// and compared to the actual runtime of the raytracing it's very small!
std::mutex queueSync;
std::queue<std::vector<int>>* unprocessedQuads = nullptr;
2022-10-20 11:30:15 -04:00
2022-10-28 01:44:23 -04:00
Vec4 raycast(const Ray& ray);
2022-10-20 11:30:15 -04:00
public:
inline void updateRayInfo(int maxBounce, int perPixel){
raysPerPixel = perPixel;
maxBounceDepth = maxBounce;
}
inline void resetRayInfo(){
raysPerPixel = 50;
maxBounceDepth = 50;
}
2022-10-20 11:30:15 -04:00
inline static Vec4 randomUnitVector() {
// there are two methods to generating a random unit sphere
// one which is fast and approximate:
auto v = Vec4(rnd.getDouble(), rnd.getDouble(), rnd.getDouble());
return v.normalize();
// and the one which generates an actual unit vector
/*while (true) {
auto v = Vec4(rnd.getDouble(), rnd.getDouble(), rnd.getDouble());
if (v.lengthSquared() >= 1)
continue;
return v;
}*/
// the second creates better results but is 18% slower (better defined shadows)
// likely due to not over generating unit vectors biased towards the corners
}
Raycaster(Camera& c, Image& i, World& world, const Parser& p): camera(c), image(i), world(world) {
world.generateBVH();
}
void runSingle();
void runMulti(unsigned int t);
[[nodiscard]] inline bool areThreadsStillRunning() const {return finishedThreads == executors.size();}
inline void join(){
for (auto& p : executors)
p->join();
}
void deleteThreads(){
for (auto& p : executors){
// wait for all threads to exit before trying to delete them.
try {
if (p->joinable())
p->join();
} catch (std::exception& e){}
}
// since executors contains the only reference to the unique_ptr it will be deleted automatically
executors.clear();
}
~Raycaster() {
deleteThreads();
2022-10-25 01:06:26 -04:00
delete(unprocessedQuads);
}
2022-10-20 11:30:15 -04:00
};
}
#endif //STEP_2_RAYTRACING_H