COSC-3P93-Project/Step 2/include/math/vectors.h

142 lines
5.6 KiB
C
Raw Normal View History

/*
* Created by Brett Terpstra 6920201 on 14/10/22.
* Copyright (c) Brett Terpstra 2022 All Rights Reserved
*/
#ifndef STEP_2_VECTORS_H
#define STEP_2_VECTORS_H
#include <cmath>
#include "util/std.h"
namespace Raytracing {
// when running on the CPU it's fine to be a double
// if your CPU is older (32bit) and has issues with doubles, consider changing it to a float
// but if we move to the GPU it has to be a float.
// since GPUs generally are far more optimized for floats
typedef double PRECISION_TYPE;
class vec4 {
private:
union xType {PRECISION_TYPE x; PRECISION_TYPE r; };
union yType {PRECISION_TYPE y; PRECISION_TYPE g; };
union zType {PRECISION_TYPE z; PRECISION_TYPE b; };
union wType {PRECISION_TYPE w; PRECISION_TYPE a; };
struct valueType {xType v1; yType v2; zType v3; wType v4;};
public:
// isn't much of a reason to do it this way
// beyond I wanted an explicit immutable vector type of length 4
// that could be used as both x,y,z + w? and rgba
// it's unlikely that we'll need to use the w component
// but it helps better line up with the GPU
// and floating point units (especially on GPUs) tend to be aligned to 4*sizeof(float)
const valueType value;
vec4(): value{0,0,0,0} {}
vec4(PRECISION_TYPE x, PRECISION_TYPE y, PRECISION_TYPE z): value{x,y,z,0} {}
vec4(PRECISION_TYPE x, PRECISION_TYPE y, PRECISION_TYPE z, PRECISION_TYPE w): value{x,y,z,w} {}
vec4(const vec4& vec): value{vec.x(), vec.y(), vec.z(), vec.w()} {}
vec4 operator=(const vec4& other) { return {other.x(), other.y(), other.z(), other.w()}; }
// I remember reading somewhere that if you can make it constant you should (Helps with -o flags?)
// I'm still a little new to C++. TODO: compare compiler output
// this is my second major project in it (the first being my java game engine i ported to c++)
// since value is constant it's unlikely we actually need to
const inline PRECISION_TYPE x() const {return value.v1.x;}
const inline PRECISION_TYPE y() const {return value.v2.y;}
const inline PRECISION_TYPE z() const {return value.v3.z;}
const inline PRECISION_TYPE w() const {return value.v4.w;}
const inline PRECISION_TYPE r() const {return value.v1.r;}
const inline PRECISION_TYPE g() const {return value.v2.g;}
const inline PRECISION_TYPE b() const {return value.v3.b;}
const inline PRECISION_TYPE a() const {return value.v4.a;}
// negation operator
const vec4 operator-() const { return vec4(-x(), -y(), -z(), -w()); }
const inline PRECISION_TYPE magnitude() const {
return sqrt(length_squared());
}
const inline PRECISION_TYPE length_squared() const {
return x() * x() + y() * y() + z() * z() + w() * w();
}
// returns the unit-vector.
const inline vec4 normalize(){
PRECISION_TYPE mag = magnitude();
return vec4(x() / mag, y() / mag, z() / mag, w() / mag);
}
// add operator before the vec returns the magnitude
PRECISION_TYPE operator+() const {
return magnitude();
}
// preforms the dot product of left * right
static inline const PRECISION_TYPE dot(const vec4& left, const vec4& right) {
return left.x() * right.x()
+ left.y() * right.y()
+ left.z() * right.z()
+ left.w() * right.w();
}
// preforms the cross product of left X right
// since a general solution to the cross product doesn't exist in 4d
// we are going to ignore the w.
static inline const vec4 cross(const vec4& left, const vec4& right) {
return vec4(left.y() * right.z() - left.z() * right.y(),
left.z() * right.x() - left.x() * right.z(),
left.x() * right.y() - left.y() * right.x());
}
};
// Utility Functions
// useful for printing out the vector to stdout
inline std::ostream& operator<<(std::ostream& out, const vec4& v) {
return out << "vec4{" << v.x() << ", " << v.y() << ", " << v.z() << ", " << v.w() << "} ";
}
// adds the two vectors left and right
inline const vec4 operator+(const vec4& left, const vec4& right) {
return vec4(left.x() + right.x(), left.y() + right.y(), left.z() + right.z(), left.w() + right.w());
}
// subtracts the right vector from the left.
inline const vec4 operator-(const vec4& left, const vec4& right) {
return vec4(left.x() - right.x(), left.y() - right.y(), left.z() - right.z(), left.w() - right.w());
}
// multiples the left with the right
inline const vec4 operator*(const vec4& left, const vec4& right) {
return vec4(left.x() * right.x(), left.y() * right.y(), left.z() * right.z(), left.w() * right.w());
}
// multiplies the const c with each element in the vector v
inline const vec4 operator*(const PRECISION_TYPE c, const vec4& v) {
return vec4(c * v.x(), c * v.y(), c * v.z(), c * v.w());
}
// same as above but for right sided constants
inline const vec4 operator*(const vec4& v, PRECISION_TYPE c) {
return c * v;
}
// divides the vector by the constant c
inline const vec4 operator/(const vec4& v, PRECISION_TYPE c) {
return vec4(v.x() / c, v.y() / c, v.z() / c, v.w() / c);
}
// divides the constant by the magnitude of the vector
inline const PRECISION_TYPE operator/(PRECISION_TYPE c, const vec4& v) {
return c / +v;
}
}
#endif //STEP_2_VECTORS_H