COSC-3P93-Project/Step 2/src/raytracing.cpp

67 lines
3.1 KiB
C++
Raw Normal View History

2022-10-16 17:53:33 -04:00
/*
* Created by Brett Terpstra 6920201 on 16/10/22.
* Copyright (c) 2022 Brett Terpstra. All Rights Reserved.
*/
#include <raytracing.h>
namespace Raytracing {
Ray Camera::projectRay(PRECISION_TYPE x, PRECISION_TYPE y) {
// transform the x and y to points from image coords to be inside the camera's viewport.
double transformedX = (x / (image.getWidth() - 1));
auto transformedY = (y / (image.getHeight() - 1));
// then generate a ray which extends out from the camera position in the direction with respects to its position on the image
return {position, imageOrigin + transformedX * horizontalAxis + transformedY * verticalAxis - position};
}
void Camera::lookAt(const vec4& pos, const vec4& lookAtPos, const vec4& up) {
// standard camera lookAt function
auto w = (pos - lookAtPos).normalize();
auto u = (vec4::cross(up, w)).normalize();
auto v = vec4::cross(w, u);
position = pos;
horizontalAxis = viewportWidth * u;
verticalAxis = viewportHeight * v;
imageOrigin = position - horizontalAxis/2 - verticalAxis/2 - w;
}
void Camera::setRotation(const PRECISION_TYPE yaw, const PRECISION_TYPE pitch, const PRECISION_TYPE roll) {
// TODO:
}
Object::HitData SphereObject::checkIfHit(const Ray& ray, PRECISION_TYPE min, PRECISION_TYPE max) {
PRECISION_TYPE radiusSquared = radius * radius;
// move the ray to be with respects to the sphere
vec4 RayWRTSphere = ray.getStartingPoint() - position;
// now determine the discriminant for the quadratic formula for the function of line sphere intercept
PRECISION_TYPE a = ray.getDirection().lengthSquared();
PRECISION_TYPE b = Raytracing::vec4::dot(RayWRTSphere, ray.getDirection());
PRECISION_TYPE c = RayWRTSphere.lengthSquared() - radiusSquared;
// > 0: the hit has two roots, meaning we hit both sides of the sphere
// = 0: the ray has one root, we hit the edge of the sphere
// < 0: ray isn't inside the sphere.
PRECISION_TYPE discriminant = b * b - (a * c);
// < 0: ray isn't inside the sphere. Don't need to bother calculating the roots.
if (discriminant < 0)
return {false, vec4(), vec4(), 0};
// now we have to find the root which exists inside our range [min,max]
auto root = (-b - sqrt(discriminant)) / a;
// if the first root isn't in our range
if (root < min || root > max) {
// check the second root
root = (-b + sqrt(discriminant)) / a;
if (root < min || root > max) {
// if the second isn't in the range then we also must return false.
return {false, vec4(), vec4(), 0};
}
}
// the hit point is where the ray is when extended to the root
auto RayAtRoot = ray.along(root);
// The normal of a sphere is just the point of the hit minus the center position
auto normal = (RayAtRoot - position).normalize();
return {true, RayAtRoot, normal, root};
}
}