first test

main
Brett 2025-01-08 17:05:06 -05:00
parent 72f3019700
commit 8963ea41ba
2 changed files with 155 additions and 23 deletions

54
graph.py Normal file
View File

@ -0,0 +1,54 @@
import matplotlib.pyplot as plt
import pandas as pd
import sys
def plot_stacked_graph(title, output, csv_file1, csv_file2, position, position2):
# Read CSV files
data1 = pd.read_csv(csv_file1, header=0)
data2 = pd.read_csv(csv_file2, header=0)
# Extract column titles
x1_label, y1_label = data1.columns[0], data1.columns[1]
x2_label, y2_label = data2.columns[0], data2.columns[1]
# Extract data
x1, y1 = data1[x1_label], data1[y1_label]
x2, y2 = data2[x2_label], data2[y2_label]
# Create the plot
fig, ax = plt.subplots()
ax.plot(x1, y1, label=f"{csv_file1}")
ax.plot(x2, y2, label=f"{csv_file2}")
ax.fill_between(x1, y1, alpha=0.5)
ax.fill_between(x2, y2, alpha=0.5)
if position < 2 ** 32:
ax.axvline(x=position, color='red', linestyle='--')
ax.text(position, ax.get_ylim()[1] * 0.95, f"Feed-forward average # of epochs", color='red', fontsize=10, ha='right', va='top', backgroundcolor='white')
if position2 < 2 ** 32:
ax.axvline(x=position2, color='red', linestyle='--')
ax.text(position2, ax.get_ylim()[1] * 0.95, f"Deep learning average # of epochs", color='red', fontsize=10, ha='right', va='top', backgroundcolor='white')
ax.set_xlabel(x1_label)
ax.set_ylabel(y1_label)
ax.legend()
ax.set_title(title)
plt.savefig(output)
if __name__ == "__main__":
if len(sys.argv) != 5:
print("Usage: python script.py <title> <output_file> <csv_file1> <csv_file2> <position_feed_forward> <position_deep>")
sys.exit(1)
csv_file1 = sys.argv[3]
csv_file2 = sys.argv[4]
title = sys.argv[1]
output = sys.argv[2]
position = sys.argv[5]
position2 = sys.argv[6]
plot_stacked_graph(title, output, csv_file1, csv_file2, position, position2)

View File

@ -20,7 +20,8 @@
#include <blt/std/memory.h>
#include <blt/std/memory_util.h>
#include <variant>
#include <bits/fs_ops.h>
#include <filesystem>
#include <iomanip>
#include <blt/iterator/iterator.h>
#include <blt/parse/argparse.h>
#include <blt/std/time.h>
@ -29,6 +30,18 @@
namespace fp
{
std::string binary_directory;
std::string python_dual_stacked_graph_program;
void run_python_line_graph(const std::string& title, const std::string& output_file, const std::string& csv1, const std::string& csv2,
const blt::size_t pos_forward, const blt::size_t pos_deep)
{
const auto command = "python3 " + python_dual_stacked_graph_program + " '" + title + "' '" + output_file + "' '" + csv1 + "' '" + csv2 + "' "
+ std::to_string(pos_forward) + " " + std::to_string(pos_deep);
BLT_TRACE("Running %s", command.c_str());
std::system(command.c_str());
}
class idx_file_t
{
template <typename T>
@ -248,7 +261,7 @@ namespace fp
struct epoch_stats_t
{
batch_stats_t test_results {};
batch_stats_t test_results{};
double average_loss = 0;
double learn_rate = 0;
@ -321,7 +334,7 @@ namespace fp
return *this;
}
blt::size_t average_size() const
[[nodiscard]] blt::size_t average_size() const
{
blt::size_t acc = 0;
for (const auto& [epoch_stats] : run_stats)
@ -329,7 +342,7 @@ namespace fp
return acc;
}
network_stats_t average_stats() const
[[nodiscard]] network_stats_t average_stats() const
{
network_stats_t stats;
for (const auto& [epoch_stats] : run_stats)
@ -380,8 +393,8 @@ namespace fp
template <typename NetworkType>
batch_stats_t test_network(NetworkType& network)
{
const idx_file_t test_images{"../problems/mnist/t10k-images.idx3-ubyte"};
const idx_file_t test_labels{"../problems/mnist/t10k-labels.idx1-ubyte"};
const idx_file_t test_images{binary_directory + "../problems/mnist/t10k-images.idx3-ubyte"};
const idx_file_t test_labels{binary_directory + "../problems/mnist/t10k-labels.idx1-ubyte"};
const image_t test_image{test_images, test_labels};
@ -398,8 +411,8 @@ namespace fp
template <typename NetworkType>
network_stats_t train_network(const std::string& ident, NetworkType& network)
{
const idx_file_t train_images{"../problems/mnist/train-images.idx3-ubyte"};
const idx_file_t train_labels{"../problems/mnist/train-labels.idx1-ubyte"};
const idx_file_t train_images{binary_directory + "../problems/mnist/train-images.idx3-ubyte"};
const idx_file_t train_labels{binary_directory + "../problems/mnist/train-labels.idx1-ubyte"};
const image_t train_image{train_images, train_labels};
@ -480,8 +493,9 @@ namespace fp
return network;
}
template<typename NetworkType>
void run_network_tests(std::string path, const std::string& ident, const blt::i32 runs, const bool restore)
template <typename NetworkType>
std::pair<network_average_stats_t, batch_stats_t> run_network_tests(std::string path, const std::string& ident, const blt::i32 runs,
const bool restore)
{
path += ("/" + ident + "/");
std::filesystem::create_directories(path);
@ -495,16 +509,28 @@ namespace fp
auto local_ident = ident + std::to_string(i);
NetworkType network{};
if (restore)
network = load_network<NetworkType>(local_ident);
try
{
network = load_network<NetworkType>(local_ident);
}
catch (dlib::serialization_error&)
{
stats += train_network(local_ident, network);
}
else
stats += train_network(local_ident, network);
test_stats.push_back(test_network(network));
}
batch_stats_t average;
for (const auto& v : test_stats)
average += v;
average /= runs;
return {stats, average};
}
void run_deep_learning_tests(const std::string& path, const blt::i32 runs, const bool restore)
auto run_deep_learning_tests(const std::string& path, const blt::i32 runs, const bool restore)
{
using namespace dlib;
using net_type_dl = loss_multiclass_log<
@ -514,30 +540,41 @@ namespace fp
max_pool<2, 2, 2, 2, relu<con<16, 5, 5, 1, 1,
max_pool<2, 2, 2, 2, relu<con<6, 5, 5, 1, 1,
input<matrix<blt::u8>>>>>>>>>>>>>>;
run_network_tests<net_type_dl>(path, "deep_learning", runs, restore);
return run_network_tests<net_type_dl>(path, "deep_learning", runs, restore);
}
void run_feed_forward_tests(const std::string& path, const blt::i32 runs, const bool restore)
auto run_feed_forward_tests(const std::string& path, const blt::i32 runs, const bool restore)
{
using namespace dlib;
using net_type_ff = loss_multiclass_log<
fc<10,
relu<fc<84,
relu<fc<120,
input<matrix<blt::u8>>>>>>>>;
relu<fc<120,
input<matrix<blt::u8>>>>>>>>;
run_network_tests<net_type_ff>(path, "feed_forward", runs, restore);
return run_network_tests<net_type_ff>(path, "feed_forward", runs, restore);
}
void run_mnist(const int argc, const char** argv)
{
binary_directory = std::filesystem::current_path();
if (!blt::string::ends_with(binary_directory, '/'))
binary_directory += '/';
python_dual_stacked_graph_program = binary_directory + "../graph.py";
BLT_TRACE(binary_directory);
BLT_TRACE(python_dual_stacked_graph_program);
using namespace dlib;
blt::arg_parse parser{};
parser.addArgument(
blt::arg_builder{"-r", "--restore"}.setAction(blt::arg_action_t::STORE_TRUE).setDefault(false).setHelp("Restores from last save").build());
blt::arg_builder{"-r", "--restore"}.setAction(blt::arg_action_t::STORE_TRUE).setDefault(false).setHelp(
"Restores from last save").build());
parser.addArgument(blt::arg_builder{"-t", "--runs"}.setHelp("Number of runs to perform [default: 10]").setDefault("10").build());
parser.addArgument(
blt::arg_builder{"-p", "--python"}.setHelp("Only run the python scripts").setAction(blt::arg_action_t::STORE_TRUE).setDefault(false).
build());
parser.addArgument(blt::arg_builder{"type"}.setDefault("all").setHelp("Type of network to run [ff, dl, default: all]").build());
auto args = parser.parse_args(argc, argv);
@ -545,16 +582,57 @@ namespace fp
const auto type = blt::string::toLowerCase(args.get<std::string>("type"));
const auto runs = std::stoi(args.get<std::string>("runs"));
const auto restore = args.get<bool>("restore");
const auto path = "./" + std::to_string(blt::system::getCurrentTimeMilliseconds());
const auto path = binary_directory + std::to_string(blt::system::getCurrentTimeMilliseconds());
if (type == "all")
{
run_deep_learning_tests(path, runs, restore);
run_feed_forward_tests(path, runs, restore);
} else if (type == "ff")
auto [deep_stats, deep_tests] = run_deep_learning_tests(path, runs, restore);
auto [forward_stats, forward_tests] = run_feed_forward_tests(path, runs, restore);
auto average_forward_size = forward_stats.average_size();
auto average_deep_size = deep_stats.average_size();
{
std::ofstream test_results_f{path + "/test_results_table.txt"};
test_results_f << "\\begin{figure}" << std::endl;
test_results_f << "\t\\begin{tabular}{|c|c|c|c|}" << std::endl;
test_results_f << "\t\t\\hline" << std::endl;
test_results_f << "\t\tTest & Correct & Incorrect & Accuracy (\\%) \\\\" << std::endl;
test_results_f << "\t\t\\hline" << std::endl;
auto test_accuracy = forward_tests.hits / static_cast<double>(forward_tests.hits + forward_tests.misses) * 100;
test_results_f << "\t\tFeed-Forward & " << forward_tests.hits << " & " << forward_tests.misses << " & " << std::setprecision(2) <<
test_accuracy << "\\\\" << std::endl;
test_accuracy = deep_tests.hits / static_cast<double>(deep_tests.hits + deep_tests.misses) * 100;
test_results_f << "\t\tDeep Learning & " << deep_tests.hits << " & " << deep_tests.misses << " & " << std::setprecision(2) <<
test_accuracy << "\\\\" << std::endl;
test_results_f << "\t\\end{tabular}" << std::endl;
test_results_f << "\\end{figure}" << std::endl;
const auto [forward_epoch_stats] = forward_stats.average_stats();
std::ofstream train_forward{path + "/forward_train_results.csv"};
train_forward << "Epoch,Loss" << std::endl;
for (const auto& [i, v] : blt::enumerate(forward_epoch_stats))
train_forward << i << ',' << v.average_loss << std::endl;
const auto [deep_epoch_stats] = deep_stats.average_stats();
std::ofstream train_deep{path + "/deep_train_results.csv"};
train_deep << "Epoch,Loss" << std::endl;
for (const auto& [i, v] : blt::enumerate(deep_epoch_stats))
train_deep << i << ',' << v.average_loss << std::endl;
std::ofstream average_epochs{path + "/average_epochs.txt"};
average_epochs << average_forward_size << "," << average_deep_size << std::endl;
}
run_python_line_graph("Feed-Forward vs Deep Learning, Average Loss over Epochs", "epochs.png", path + "/forward_train_results.csv",
path + "/deep_train_results.csv", average_forward_size, average_deep_size);
}
else if (type == "ff")
{
run_feed_forward_tests(path, runs, restore);
} else if (type == "df")
}
else if (type == "df")
{
run_deep_learning_tests(path, runs, restore);
}