blt-gp/include/blt/gp/selection.h

232 lines
8.4 KiB
C
Raw Permalink Normal View History

#pragma once
/*
* Copyright (C) 2024 Brett Terpstra
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef BLT_GP_SELECTION_H
#define BLT_GP_SELECTION_H
#include <blt/gp/fwdecl.h>
#include <blt/gp/tree.h>
#include <blt/gp/config.h>
#include <blt/gp/random.h>
#include <blt/std/assert.h>
2024-09-06 00:21:55 -04:00
#include "blt/format/format.h"
namespace blt::gp
{
struct selector_args
{
gp_program& program;
2024-08-31 22:03:22 -04:00
const population_t& current_pop;
population_stats& current_stats;
prog_config_t& config;
random_t& random;
};
2024-08-31 22:03:22 -04:00
constexpr inline auto perform_elitism = [](const selector_args& args, population_t& next_pop) {
auto& [program, current_pop, current_stats, config, random] = args;
2024-07-09 21:57:18 -04:00
2024-09-02 15:41:20 -04:00
if (config.elites > 0 && current_pop.get_individuals().size() >= config.elites)
2024-07-09 21:57:18 -04:00
{
static thread_local tracked_vector<std::pair<std::size_t, double>> values;
values.clear();
2024-07-10 22:00:28 -04:00
2024-07-09 21:57:18 -04:00
for (blt::size_t i = 0; i < config.elites; i++)
2024-07-11 04:11:24 -04:00
values.emplace_back(i, current_pop.get_individuals()[i].fitness.adjusted_fitness);
2024-07-10 22:00:28 -04:00
for (const auto& ind : blt::enumerate(current_pop.get_individuals()))
2024-07-09 21:57:18 -04:00
{
2024-07-10 22:00:28 -04:00
for (blt::size_t i = 0; i < config.elites; i++)
{
2024-07-11 13:51:14 -04:00
if (ind.second.fitness.adjusted_fitness >= values[i].second)
2024-07-10 22:00:28 -04:00
{
2024-07-11 00:52:36 -04:00
bool doesnt_contain = true;
for (blt::size_t j = 0; j < config.elites; j++)
{
if (ind.first == values[j].first)
doesnt_contain = false;
}
if (doesnt_contain)
2024-07-11 04:11:24 -04:00
values[i] = {ind.first, ind.second.fitness.adjusted_fitness};
2024-07-11 00:52:36 -04:00
break;
2024-07-10 22:00:28 -04:00
}
}
}
for (blt::size_t i = 0; i < config.elites; i++)
2024-08-31 22:03:22 -04:00
next_pop.get_individuals()[i].copy_fast(current_pop.get_individuals()[values[i].first].tree);
2024-09-02 15:41:20 -04:00
return config.elites;
2024-07-09 21:57:18 -04:00
}
2024-09-02 15:41:20 -04:00
return 0ul;
};
template<typename Crossover, typename Mutation, typename Reproduction>
constexpr inline auto default_next_pop_creator = [](
2024-08-31 22:03:22 -04:00
blt::gp::selector_args& args, Crossover& crossover_selection, Mutation& mutation_selection, Reproduction& reproduction_selection,
tree_t& c1, tree_t* c2) {
auto& [program, current_pop, current_stats, config, random] = args;
int sel = random.get_i32(0, 3);
switch (sel)
2024-07-09 21:57:18 -04:00
{
case 0:
2024-08-31 22:03:22 -04:00
if (c2 == nullptr)
return 0;
// everyone gets a chance once per loop.
if (random.choice(config.crossover_chance))
2024-07-09 21:57:18 -04:00
{
2024-08-31 23:15:16 -04:00
#ifdef BLT_TRACK_ALLOCATIONS
2024-09-02 01:55:15 -04:00
auto state = tracker.start_measurement_thread_local();
2024-08-31 23:15:16 -04:00
#endif
// crossover
2024-08-31 22:03:22 -04:00
const tree_t* p1;
const tree_t* p2;
do
2024-07-09 21:57:18 -04:00
{
2024-08-31 22:03:22 -04:00
p1 = &crossover_selection.select(program, current_pop);
p2 = &crossover_selection.select(program, current_pop);
2024-09-05 02:20:03 -04:00
c1.copy_fast(*p1);
c2->copy_fast(*p2);
2024-08-31 22:03:22 -04:00
} while (!config.crossover.get().apply(program, *p1, *p2, c1, *c2));
2024-08-31 23:15:16 -04:00
#ifdef BLT_TRACK_ALLOCATIONS
2024-09-02 01:55:15 -04:00
tracker.stop_measurement_thread_local(state);
crossover_calls.call();
2024-09-02 03:08:03 -04:00
crossover_calls.set_value(std::max(crossover_calls.get_value(), state.getAllocatedByteDifference()));
2024-09-02 01:55:15 -04:00
if (state.getAllocatedByteDifference() != 0)
{
2024-08-31 23:15:16 -04:00
crossover_allocations.call(state.getAllocatedByteDifference());
2024-09-02 01:55:15 -04:00
}
2024-08-31 23:15:16 -04:00
#endif
2024-08-31 22:03:22 -04:00
return 2;
2024-07-09 21:57:18 -04:00
}
break;
case 1:
if (random.choice(config.mutation_chance))
{
2024-08-31 23:15:16 -04:00
#ifdef BLT_TRACK_ALLOCATIONS
2024-09-02 01:55:15 -04:00
auto state = tracker.start_measurement_thread_local();
2024-08-31 23:15:16 -04:00
#endif
// mutation
2024-08-31 22:03:22 -04:00
const tree_t* p;
do
{
p = &mutation_selection.select(program, current_pop);
2024-09-05 02:20:03 -04:00
c1.copy_fast(*p);
2024-08-31 22:03:22 -04:00
} while (!config.mutator.get().apply(program, *p, c1));
2024-08-31 23:15:16 -04:00
#ifdef BLT_TRACK_ALLOCATIONS
2024-09-02 01:55:15 -04:00
tracker.stop_measurement_thread_local(state);
mutation_calls.call();
2024-09-02 03:08:03 -04:00
mutation_calls.set_value(std::max(mutation_calls.get_value(), state.getAllocatedByteDifference()));
2024-08-31 23:15:16 -04:00
if (state.getAllocationDifference() != 0)
{
mutation_allocations.call(state.getAllocatedByteDifference());
}
#endif
2024-08-31 22:03:22 -04:00
return 1;
}
break;
case 2:
if (config.reproduction_chance > 0 && random.choice(config.reproduction_chance))
{
2024-08-31 23:15:16 -04:00
#ifdef BLT_TRACK_ALLOCATIONS
2024-09-02 01:55:15 -04:00
auto state = tracker.start_measurement_thread_local();
2024-08-31 23:15:16 -04:00
#endif
// reproduction
2024-09-05 02:20:03 -04:00
c1.copy_fast(reproduction_selection.select(program, current_pop));
2024-08-31 23:15:16 -04:00
#ifdef BLT_TRACK_ALLOCATIONS
2024-09-02 01:55:15 -04:00
tracker.stop_measurement_thread_local(state);
reproduction_calls.call();
2024-09-02 03:08:03 -04:00
reproduction_calls.set_value(std::max(reproduction_calls.get_value(), state.getAllocatedByteDifference()));
2024-08-31 23:15:16 -04:00
if (state.getAllocationDifference() != 0)
{
reproduction_allocations.call(state.getAllocatedByteDifference());
}
#endif
2024-08-31 22:03:22 -04:00
return 1;
}
break;
default:
#if BLT_DEBUG_LEVEL > 0
BLT_ABORT("This is not possible!");
#else
BLT_UNREACHABLE;
#endif
2024-07-09 21:57:18 -04:00
}
2024-08-31 22:03:22 -04:00
return 0;
2024-07-09 21:57:18 -04:00
};
class selection_t
{
public:
/**
* @param program gp program to select with, used in randoms
* @param pop population to select from
* @param stats the populations statistics
* @return
*/
2024-08-31 22:03:22 -04:00
virtual const tree_t& select(gp_program& program, const population_t& pop) = 0;
2024-08-30 23:27:25 -04:00
virtual void pre_process(gp_program&, population_t&)
2024-07-09 00:49:49 -04:00
{}
virtual ~selection_t() = default;
};
class select_best_t : public selection_t
{
public:
2024-08-31 22:03:22 -04:00
const tree_t& select(gp_program& program, const population_t& pop) final;
};
class select_worst_t : public selection_t
{
public:
2024-08-31 22:03:22 -04:00
const tree_t& select(gp_program& program, const population_t& pop) final;
};
class select_random_t : public selection_t
{
public:
2024-08-31 22:03:22 -04:00
const tree_t& select(gp_program& program, const population_t& pop) final;
};
class select_tournament_t : public selection_t
{
public:
explicit select_tournament_t(blt::size_t selection_size = 3): selection_size(selection_size)
{
2024-08-28 17:08:59 -04:00
if (selection_size == 0)
BLT_ABORT("Unable to select with this size. Must select at least 1 individual_t!");
}
2024-08-31 22:03:22 -04:00
const tree_t& select(gp_program& program, const population_t& pop) final;
private:
2024-07-11 13:51:14 -04:00
const blt::size_t selection_size;
};
class select_fitness_proportionate_t : public selection_t
{
public:
2024-08-31 22:03:22 -04:00
const tree_t& select(gp_program& program, const population_t& pop) final;
};
}
#endif //BLT_GP_SELECTION_H