threading on the next generation function + working on debug

thread
Brett 2024-08-17 19:52:52 -04:00
parent 18ef85c1ce
commit 58b3ed02c3
6 changed files with 248 additions and 246 deletions

View File

@ -1,5 +1,5 @@
cmake_minimum_required(VERSION 3.25) cmake_minimum_required(VERSION 3.25)
project(blt-gp VERSION 0.1.4) project(blt-gp VERSION 0.1.5)
include(CTest) include(CTest)

View File

@ -39,7 +39,7 @@ blt::gp::prog_config_t config = blt::gp::prog_config_t()
.set_mutation_chance(0.1) .set_mutation_chance(0.1)
.set_reproduction_chance(0) .set_reproduction_chance(0)
.set_max_generations(50) .set_max_generations(50)
.set_pop_size(50000) .set_pop_size(500)
.set_thread_count(0); .set_thread_count(0);
blt::gp::type_provider type_system; blt::gp::type_provider type_system;
@ -117,15 +117,15 @@ int main()
program.set_operations(builder.build()); program.set_operations(builder.build());
BLT_DEBUG("Generate Initial Population"); BLT_DEBUG("Generate Initial Population");
program.generate_population(type_system.get_type<float>().id(), fitness_function); auto sel = blt::gp::select_fitness_proportionate_t{};
program.generate_population(type_system.get_type<float>().id(), fitness_function, sel, sel, sel);
BLT_DEBUG("Begin Generation Loop"); BLT_DEBUG("Begin Generation Loop");
while (!program.should_terminate()) while (!program.should_terminate())
{ {
BLT_TRACE("------------{Begin Generation %ld}------------", program.get_current_generation()); BLT_TRACE("------------{Begin Generation %ld}------------", program.get_current_generation());
BLT_START_INTERVAL("Symbolic Regression", "Gen"); BLT_START_INTERVAL("Symbolic Regression", "Gen");
auto sel = blt::gp::select_fitness_proportionate_t{}; program.create_next_generation();
program.create_next_generation(sel, sel, sel);
BLT_END_INTERVAL("Symbolic Regression", "Gen"); BLT_END_INTERVAL("Symbolic Regression", "Gen");
BLT_TRACE("Move to next generation"); BLT_TRACE("Move to next generation");
BLT_START_INTERVAL("Symbolic Regression", "Fitness"); BLT_START_INTERVAL("Symbolic Regression", "Fitness");

View File

@ -264,19 +264,12 @@ namespace blt::gp
system(system), seed(seed), config(config) system(system), seed(seed), config(config)
{ create_threads(); } { create_threads(); }
template<typename Crossover, typename Mutation, typename Reproduction, typename CreationFunc = decltype(default_next_pop_creator<Crossover, Mutation, Reproduction>)> void create_next_generation()
void create_next_generation(Crossover&& crossover_selection, Mutation&& mutation_selection, Reproduction&& reproduction_selection,
CreationFunc& func = default_next_pop_creator<Crossover, Mutation, Reproduction>)
{ {
// should already be empty // should already be empty
next_pop.clear(); next_pop.clear();
crossover_selection.pre_process(*this, current_pop, current_stats); thread_helper.next_gen_left.store(config.population_size, std::memory_order_release);
mutation_selection.pre_process(*this, current_pop, current_stats); (*thread_execution_service)(0);
reproduction_selection.pre_process(*this, current_pop, current_stats);
auto args = get_selector_args();
func(args, std::forward<Crossover>(crossover_selection), std::forward<Mutation>(mutation_selection),
std::forward<Reproduction>(reproduction_selection));
} }
void evaluate_fitness() void evaluate_fitness()
@ -294,8 +287,10 @@ namespace blt::gp
* *
* NOTE: 0 is considered the best, in terms of standardized fitness * NOTE: 0 is considered the best, in terms of standardized fitness
*/ */
template<typename FitnessFunc> template<typename FitnessFunc, typename Crossover, typename Mutation, typename Reproduction, typename CreationFunc = decltype(default_next_pop_creator<Crossover, Mutation, Reproduction>)>
void generate_population(type_id root_type, FitnessFunc& fitness_function, bool eval_fitness_now = true) void generate_population(type_id root_type, FitnessFunc& fitness_function,
Crossover& crossover_selection, Mutation& mutation_selection, Reproduction& reproduction_selection,
CreationFunc& func = default_next_pop_creator<Crossover, Mutation, Reproduction>, bool eval_fitness_now = true)
{ {
using LambdaReturn = typename decltype(blt::meta::lambda_helper(fitness_function))::Return; using LambdaReturn = typename decltype(blt::meta::lambda_helper(fitness_function))::Return;
current_pop = config.pop_initializer.get().generate( current_pop = config.pop_initializer.get().generate(
@ -303,107 +298,157 @@ namespace blt::gp
if (config.threads == 1) if (config.threads == 1)
{ {
BLT_INFO("Starting with single thread variant!"); BLT_INFO("Starting with single thread variant!");
thread_execution_service = new std::function([this, &fitness_function](blt::size_t) { thread_execution_service = new std::function(
for (const auto& ind : blt::enumerate(current_pop.get_individuals())) [this, &fitness_function, &crossover_selection, &mutation_selection, &reproduction_selection, &func](blt::size_t) {
{ if (thread_helper.evaluation_left > 0)
if constexpr (std::is_same_v<LambdaReturn, bool> || std::is_convertible_v<LambdaReturn, bool>) {
{ for (const auto& ind : blt::enumerate(current_pop.get_individuals()))
auto result = fitness_function(ind.second.tree, ind.second.fitness, ind.first); {
if (result) if constexpr (std::is_same_v<LambdaReturn, bool> || std::is_convertible_v<LambdaReturn, bool>)
fitness_should_exit = true; {
} else auto result = fitness_function(ind.second.tree, ind.second.fitness, ind.first);
{ if (result)
fitness_function(ind.second.tree, ind.second.fitness, ind.first); fitness_should_exit = true;
} } else
{
if (ind.second.fitness.adjusted_fitness > current_stats.best_fitness) fitness_function(ind.second.tree, ind.second.fitness, ind.first);
current_stats.best_fitness = ind.second.fitness.adjusted_fitness; }
if (ind.second.fitness.adjusted_fitness < current_stats.worst_fitness) if (ind.second.fitness.adjusted_fitness > current_stats.best_fitness)
current_stats.worst_fitness = ind.second.fitness.adjusted_fitness; current_stats.best_fitness = ind.second.fitness.adjusted_fitness;
current_stats.overall_fitness = current_stats.overall_fitness + ind.second.fitness.adjusted_fitness; if (ind.second.fitness.adjusted_fitness < current_stats.worst_fitness)
} current_stats.worst_fitness = ind.second.fitness.adjusted_fitness;
});
current_stats.overall_fitness = current_stats.overall_fitness + ind.second.fitness.adjusted_fitness;
}
thread_helper.evaluation_left = 0;
}
if (thread_helper.next_gen_left > 0)
{
static thread_local std::vector<tree_t> new_children;
new_children.clear();
auto args = get_selector_args(new_children);
crossover_selection.pre_process(*this, current_pop, current_stats);
mutation_selection.pre_process(*this, current_pop, current_stats);
reproduction_selection.pre_process(*this, current_pop, current_stats);
perform_elitism(args);
while (new_children.size() < config.population_size)
func(args, crossover_selection, mutation_selection, reproduction_selection);
for (auto& i : new_children)
next_pop.get_individuals().emplace_back(std::move(i));
thread_helper.next_gen_left = 0;
}
});
} else } else
{ {
BLT_INFO("Starting thread execution service!"); BLT_INFO("Starting thread execution service!");
std::scoped_lock lock(thread_helper.thread_function_control); std::scoped_lock lock(thread_helper.thread_function_control);
thread_execution_service = new std::function([this, &fitness_function](blt::size_t) { thread_execution_service = new std::function(
thread_helper.barrier.wait(); [this, &fitness_function, &crossover_selection, &mutation_selection, &reproduction_selection, &func](blt::size_t id) {
if (thread_helper.evaluation_left > 0) thread_helper.barrier.wait();
{ if (thread_helper.evaluation_left > 0)
while (thread_helper.evaluation_left > 0)
{
blt::size_t size = 0;
blt::size_t begin = 0;
blt::size_t end = thread_helper.evaluation_left.load(std::memory_order_relaxed);
do
{ {
size = std::min(end, config.evaluation_size); while (thread_helper.evaluation_left > 0)
begin = end - size;
} while (!thread_helper.evaluation_left.compare_exchange_weak(end, end - size,
std::memory_order::memory_order_relaxed,
std::memory_order::memory_order_relaxed));
for (blt::size_t i = begin; i < end; i++)
{
auto& ind = current_pop.get_individuals()[i];
if constexpr (std::is_same_v<LambdaReturn, bool> || std::is_convertible_v<LambdaReturn, bool>)
{ {
auto result = fitness_function(ind.tree, ind.fitness, i); blt::size_t size = 0;
if (result) blt::size_t begin = 0;
fitness_should_exit = true; blt::size_t end = thread_helper.evaluation_left.load(std::memory_order_relaxed);
} else do
{ {
fitness_function(ind.tree, ind.fitness, i); size = std::min(end, config.evaluation_size);
begin = end - size;
} while (!thread_helper.evaluation_left.compare_exchange_weak(end, end - size,
std::memory_order::memory_order_relaxed,
std::memory_order::memory_order_relaxed));
for (blt::size_t i = begin; i < end; i++)
{
auto& ind = current_pop.get_individuals()[i];
if constexpr (std::is_same_v<LambdaReturn, bool> || std::is_convertible_v<LambdaReturn, bool>)
{
auto result = fitness_function(ind.tree, ind.fitness, i);
if (result)
fitness_should_exit = true;
} else
{
fitness_function(ind.tree, ind.fitness, i);
}
auto old_best = current_stats.best_fitness.load(std::memory_order_relaxed);
while (ind.fitness.adjusted_fitness > old_best &&
!current_stats.best_fitness.compare_exchange_weak(old_best, ind.fitness.adjusted_fitness,
std::memory_order_relaxed,
std::memory_order_relaxed));
auto old_worst = current_stats.worst_fitness.load(std::memory_order_relaxed);
while (ind.fitness.adjusted_fitness < old_worst &&
!current_stats.worst_fitness.compare_exchange_weak(old_worst, ind.fitness.adjusted_fitness,
std::memory_order_relaxed,
std::memory_order_relaxed));
auto old_overall = current_stats.overall_fitness.load(std::memory_order_relaxed);
while (!current_stats.overall_fitness.compare_exchange_weak(old_overall,
ind.fitness.adjusted_fitness + old_overall,
std::memory_order_relaxed,
std::memory_order_relaxed));
}
} }
auto old_best = current_stats.best_fitness.load(std::memory_order_relaxed);
while (ind.fitness.adjusted_fitness > old_best &&
!current_stats.best_fitness.compare_exchange_weak(old_best, ind.fitness.adjusted_fitness,
std::memory_order_relaxed, std::memory_order_relaxed));
auto old_worst = current_stats.worst_fitness.load(std::memory_order_relaxed);
while (ind.fitness.adjusted_fitness < old_worst &&
!current_stats.worst_fitness.compare_exchange_weak(old_worst, ind.fitness.adjusted_fitness,
std::memory_order_relaxed, std::memory_order_relaxed));
auto old_overall = current_stats.overall_fitness.load(std::memory_order_relaxed);
while (!current_stats.overall_fitness.compare_exchange_weak(old_overall,
ind.fitness.adjusted_fitness + old_overall,
std::memory_order_relaxed,
std::memory_order_relaxed));
} }
} if (thread_helper.next_gen_left > 0)
}
if (thread_helper.next_gen_left > 0)
{
while (thread_helper.next_gen_left > 0)
{
blt::size_t size = 0;
blt::size_t begin = 0;
blt::size_t end = thread_helper.next_gen_left.load(std::memory_order_relaxed);
do
{
size = std::min(end, config.evaluation_size);
begin = end - size;
} while (!thread_helper.next_gen_left.compare_exchange_weak(end, end - size,
std::memory_order::memory_order_relaxed,
std::memory_order::memory_order_relaxed));
static thread_local std::vector<tree_t> new_children;
new_children.clear();
for (blt::size_t i = begin; i < end; i++)
{ {
static thread_local std::vector<tree_t> new_children;
new_children.clear();
auto args = get_selector_args(new_children);
if (id == 0)
{
crossover_selection.pre_process(*this, current_pop, current_stats);
mutation_selection.pre_process(*this, current_pop, current_stats);
reproduction_selection.pre_process(*this, current_pop, current_stats);
perform_elitism(args);
for (auto& i : new_children)
next_pop.get_individuals().emplace_back(std::move(i));
thread_helper.next_gen_left -= new_children.size();
new_children.clear();
}
thread_helper.barrier.wait();
while (thread_helper.next_gen_left > 0)
{
blt::size_t size = 0;
blt::size_t begin = 0;
blt::size_t end = thread_helper.next_gen_left.load(std::memory_order_relaxed);
do
{
size = std::min(end, config.evaluation_size);
begin = end - size;
} while (!thread_helper.next_gen_left.compare_exchange_weak(end, end - size,
std::memory_order::memory_order_relaxed,
std::memory_order::memory_order_relaxed));
for (blt::size_t i = begin; i < end; i++)
func(args, crossover_selection, mutation_selection, reproduction_selection);
{
std::scoped_lock lock(thread_helper.thread_generation_lock);
for (auto& i : new_children)
{
if (next_pop.get_individuals().size() < config.population_size)
next_pop.get_individuals().emplace_back(i);
}
}
}
} }
} thread_helper.barrier.wait();
} });
thread_helper.barrier.wait();
});
thread_helper.thread_function_condition.notify_all(); thread_helper.thread_function_condition.notify_all();
} }
if (eval_fitness_now) if (eval_fitness_now)
@ -605,6 +650,7 @@ namespace blt::gp
std::vector<std::unique_ptr<std::thread>> threads; std::vector<std::unique_ptr<std::thread>> threads;
std::mutex thread_function_control; std::mutex thread_function_control;
std::mutex thread_generation_lock;
std::condition_variable thread_function_condition{}; std::condition_variable thread_function_condition{};
std::atomic_uint64_t evaluation_left = 0; std::atomic_uint64_t evaluation_left = 0;
@ -620,9 +666,9 @@ namespace blt::gp
// for convenience, shouldn't decrease performance too much // for convenience, shouldn't decrease performance too much
std::atomic<std::function<void(blt::size_t)>*> thread_execution_service = nullptr; std::atomic<std::function<void(blt::size_t)>*> thread_execution_service = nullptr;
inline selector_args get_selector_args() inline selector_args get_selector_args(std::vector<tree_t>& next_pop_trees)
{ {
return {*this, next_pop, current_pop, current_stats, config, get_random()}; return {*this, next_pop_trees, current_pop, current_stats, config, get_random()};
} }
template<typename Return, blt::size_t size, typename Accessor, blt::size_t... indexes> template<typename Return, blt::size_t size, typename Accessor, blt::size_t... indexes>
@ -637,8 +683,7 @@ namespace blt::gp
void evaluate_fitness_internal() void evaluate_fitness_internal()
{ {
current_stats.clear(); current_stats.clear();
if (config.threads != 1) thread_helper.evaluation_left.store(current_pop.get_individuals().size(), std::memory_order_release);
thread_helper.evaluation_left.store(current_pop.get_individuals().size(), std::memory_order_release);
(*thread_execution_service)(0); (*thread_execution_service)(0);
current_stats.average_fitness = current_stats.overall_fitness / static_cast<double>(config.population_size); current_stats.average_fitness = current_stats.overall_fitness / static_cast<double>(config.population_size);

View File

@ -31,7 +31,7 @@ namespace blt::gp
struct selector_args struct selector_args
{ {
gp_program& program; gp_program& program;
population_t& next_pop; std::vector<tree_t>& next_pop;
population_t& current_pop; population_t& current_pop;
population_stats& current_stats; population_stats& current_stats;
prog_config_t& config; prog_config_t& config;
@ -70,119 +70,58 @@ namespace blt::gp
} }
for (blt::size_t i = 0; i < config.elites; i++) for (blt::size_t i = 0; i < config.elites; i++)
next_pop.get_individuals().push_back(current_pop.get_individuals()[values[i].first]); next_pop.push_back(current_pop.get_individuals()[values[i].first].tree);
}
};
template<typename Crossover, typename Mutation, typename Reproduction>
constexpr inline auto proportionate_next_pop_creator = [](
const selector_args& args, Crossover crossover_selection, Mutation mutation_selection, Reproduction reproduction_selection) {
auto& [program, next_pop, current_pop, current_stats, config, random] = args;
double total_prob = config.mutation_chance + config.crossover_chance;
double crossover_chance = config.crossover_chance / total_prob;
double mutation_chance = crossover_chance + config.mutation_chance / total_prob;
perform_elitism(args);
while (next_pop.get_individuals().size() < config.population_size)
{
auto type = random.get_double();
if (type > crossover_chance && type < mutation_chance)
{
// crossover
auto& p1 = crossover_selection.select(program, current_pop, current_stats);
auto& p2 = crossover_selection.select(program, current_pop, current_stats);
auto results = config.crossover.get().apply(program, p1, p2);
// if crossover fails, we can check for mutation on these guys. otherwise straight copy them into the next pop
if (results)
{
next_pop.get_individuals().emplace_back(std::move(results->child1));
// annoying check
if (next_pop.get_individuals().size() < config.population_size)
next_pop.get_individuals().emplace_back(std::move(results->child2));
} else
{
if (config.try_mutation_on_crossover_failure && random.choice(config.mutation_chance))
next_pop.get_individuals().emplace_back(std::move(config.mutator.get().apply(program, p1)));
else
next_pop.get_individuals().push_back(individual{p1});
// annoying check.
if (next_pop.get_individuals().size() < config.population_size)
{
if (config.try_mutation_on_crossover_failure && random.choice(config.mutation_chance))
next_pop.get_individuals().emplace_back(std::move(config.mutator.get().apply(program, p2)));
else
next_pop.get_individuals().push_back(individual{p2});
}
}
} else if (type > mutation_chance)
{
// mutation
auto& p = mutation_selection.select(program, current_pop, current_stats);
next_pop.get_individuals().emplace_back(std::move(config.mutator.get().apply(program, p)));
} else
{
// reproduction
auto& p = reproduction_selection.select(program, current_pop, current_stats);
next_pop.get_individuals().push_back(individual{p});
}
} }
}; };
template<typename Crossover, typename Mutation, typename Reproduction> template<typename Crossover, typename Mutation, typename Reproduction>
constexpr inline auto default_next_pop_creator = []( constexpr inline auto default_next_pop_creator = [](
const blt::gp::selector_args& args, Crossover crossover_selection, Mutation mutation_selection, Reproduction reproduction_selection) { blt::gp::selector_args& args, Crossover& crossover_selection, Mutation& mutation_selection, Reproduction& reproduction_selection) {
auto& [program, next_pop, current_pop, current_stats, config, random] = args; auto& [program, next_pop, current_pop, current_stats, config, random] = args;
perform_elitism(args); int sel = random.get_i32(0, 3);
switch (sel)
while (next_pop.get_individuals().size() < config.population_size)
{ {
int sel = random.get_i32(0, 3); case 0:
switch (sel) // everyone gets a chance once per loop.
{ if (random.choice(config.crossover_chance))
case 0: {
// everyone gets a chance once per loop. // crossover
if (random.choice(config.crossover_chance)) auto& p1 = crossover_selection.select(program, current_pop, current_stats);
auto& p2 = crossover_selection.select(program, current_pop, current_stats);
auto results = config.crossover.get().apply(program, p1, p2);
// if crossover fails, we can check for mutation on these guys. otherwise straight copy them into the next pop
if (results)
{ {
// crossover next_pop.push_back(std::move(results->child1));
auto& p1 = crossover_selection.select(program, current_pop, current_stats); next_pop.push_back(std::move(results->child2));
auto& p2 = crossover_selection.select(program, current_pop, current_stats);
auto results = config.crossover.get().apply(program, p1, p2);
// if crossover fails, we can check for mutation on these guys. otherwise straight copy them into the next pop
if (results)
{
next_pop.get_individuals().emplace_back(std::move(results->child1));
// annoying check
if (next_pop.get_individuals().size() < config.population_size)
next_pop.get_individuals().emplace_back(std::move(results->child2));
}
} }
break; }
case 1: break;
if (random.choice(config.mutation_chance)) case 1:
{ if (random.choice(config.mutation_chance))
// mutation {
auto& p = mutation_selection.select(program, current_pop, current_stats); // mutation
next_pop.get_individuals().emplace_back(std::move(config.mutator.get().apply(program, p))); auto& p = mutation_selection.select(program, current_pop, current_stats);
} next_pop.push_back(std::move(config.mutator.get().apply(program, p)));
break; }
case 2: break;
if (config.reproduction_chance > 0 && random.choice(config.reproduction_chance)) case 2:
{ if (config.reproduction_chance > 0 && random.choice(config.reproduction_chance))
// reproduction {
auto& p = reproduction_selection.select(program, current_pop, current_stats); // reproduction
next_pop.get_individuals().push_back(individual{p}); auto& p = reproduction_selection.select(program, current_pop, current_stats);
} next_pop.push_back(p);
break; }
default: break;
BLT_ABORT("This is not possible!"); default:
} #if BLT_DEBUG_LEVEL > 0
BLT_ABORT("This is not possible!");
#else
BLT_UNREACHABLE;
#endif
} }
}; };

View File

@ -54,37 +54,14 @@ namespace blt::gp
blt::size_t total_size_bytes = 0; blt::size_t total_size_bytes = 0;
blt::size_t total_used_bytes = 0; blt::size_t total_used_bytes = 0;
blt::size_t total_remaining_bytes = 0; blt::size_t total_remaining_bytes = 0;
blt::size_t total_no_meta_bytes = 0;
blt::size_t total_dealloc = 0;
blt::size_t total_dealloc_used = 0;
blt::size_t total_dealloc_remaining = 0;
blt::size_t total_dealloc_no_meta = 0;
blt::size_t blocks = 0;
friend std::ostream& operator<<(std::ostream& stream, const size_data_t& data) friend std::ostream& operator<<(std::ostream& stream, const size_data_t& data)
{ {
stream << "["; stream << "[";
stream << data.total_used_bytes << "/"; stream << data.total_used_bytes << " / " << data.total_size_bytes;
stream << data.total_size_bytes << "("; stream << " ("
stream << (static_cast<double>(data.total_used_bytes) / static_cast<double>(data.total_size_bytes) * 100) << "%), "; << (data.total_size_bytes != 0 ? (static_cast<double>(data.total_used_bytes) / static_cast<double>(data.total_size_bytes) *
stream << data.total_used_bytes << "/"; 100) : 0) << "%); space left: " << data.total_remaining_bytes << "]";
stream << data.total_no_meta_bytes << "(";
stream << (static_cast<double>(data.total_used_bytes) / static_cast<double>(data.total_no_meta_bytes) * 100)
<< "%), (empty space: ";
stream << data.total_remaining_bytes << ") blocks: " << data.blocks << " || unallocated space: ";
stream << data.total_dealloc_used << "/";
stream << data.total_dealloc;
if (static_cast<double>(data.total_dealloc) > 0)
stream << "(" << (static_cast<double>(data.total_dealloc_used) / static_cast<double>(data.total_dealloc) * 100) << "%)";
stream << ", ";
stream << data.total_dealloc_used << "/";
stream << data.total_dealloc_no_meta;
if (data.total_dealloc_no_meta > 0)
stream << "(" << (static_cast<double>(data.total_dealloc_used) / static_cast<double>(data.total_dealloc_no_meta * 100))
<< "%)";
stream << ", (empty space: " << data.total_dealloc_remaining << ")]";
return stream; return stream;
} }
}; };
@ -132,6 +109,10 @@ namespace blt::gp
void insert(const stack_allocator& stack) void insert(const stack_allocator& stack)
{ {
#if BLT_DEBUG_LEVEL > 1
if (stack.empty())
BLT_WARN("Insert called on an empty stack!");
#endif
if (size_ < stack.bytes_stored + bytes_stored) if (size_ < stack.bytes_stored + bytes_stored)
expand(stack.bytes_stored + bytes_stored); expand(stack.bytes_stored + bytes_stored);
std::memcpy(data_ + bytes_stored, stack.data_, stack.bytes_stored); std::memcpy(data_ + bytes_stored, stack.data_, stack.bytes_stored);
@ -140,6 +121,12 @@ namespace blt::gp
void copy_from(const stack_allocator& stack, blt::size_t bytes) void copy_from(const stack_allocator& stack, blt::size_t bytes)
{ {
#if BLT_DEBUG_LEVEL > 0
if (stack.empty())
BLT_WARN("Copy From called on an empty stack");
if (bytes == 0)
BLT_WARN("Requested 0 bytes to be copied. This seems to be an error!");
#endif
if (size_ < bytes + bytes_stored) if (size_ < bytes + bytes_stored)
expand(bytes + bytes_stored); expand(bytes + bytes_stored);
std::memcpy(data_ + bytes_stored, stack.data_ + (stack.bytes_stored - bytes), bytes); std::memcpy(data_ + bytes_stored, stack.data_ + (stack.bytes_stored - bytes), bytes);
@ -148,6 +135,12 @@ namespace blt::gp
void copy_from(blt::u8* data, blt::size_t bytes) void copy_from(blt::u8* data, blt::size_t bytes)
{ {
#if BLT_DEBUG_LEVEL > 0
if (data == nullptr)
BLT_ABORT("Nullptr provided to copy_from function!");
if (bytes == 0)
BLT_WARN("Requested 0 bytes to be copied from, nothing will happen.");
#endif
if (size_ < bytes + bytes_stored) if (size_ < bytes + bytes_stored)
expand(bytes + bytes_stored); expand(bytes + bytes_stored);
std::memcpy(data_ + bytes_stored, data, bytes); std::memcpy(data_ + bytes_stored, data, bytes);
@ -156,6 +149,12 @@ namespace blt::gp
void copy_to(blt::u8* data, blt::size_t bytes) void copy_to(blt::u8* data, blt::size_t bytes)
{ {
#if BLT_DEBUG_LEVEL > 0
if (data == nullptr)
BLT_ABORT("Nullptr provided to copy_to function!");
if (bytes == 0)
BLT_WARN("Requested 0 to be copied to, nothing will happen!");
#endif
std::memcpy(data, data_ + (bytes_stored - bytes), bytes); std::memcpy(data, data_ + (bytes_stored - bytes), bytes);
} }
@ -174,6 +173,10 @@ namespace blt::gp
static_assert(std::is_trivially_copyable_v<NO_REF> && "Type must be bitwise copyable!"); static_assert(std::is_trivially_copyable_v<NO_REF> && "Type must be bitwise copyable!");
static_assert(alignof(NO_REF) <= MAX_ALIGNMENT && "Type alignment must not be greater than the max alignment!"); static_assert(alignof(NO_REF) <= MAX_ALIGNMENT && "Type alignment must not be greater than the max alignment!");
constexpr auto size = aligned_size(sizeof(NO_REF)); constexpr auto size = aligned_size(sizeof(NO_REF));
#if BLT_DEBUG_LEVEL > 0
if (bytes_stored < size)
BLT_ABORT("Not enough bytes left to pop!");
#endif
bytes_stored -= size; bytes_stored -= size;
return *reinterpret_cast<T*>(data_ + bytes_stored); return *reinterpret_cast<T*>(data_ + bytes_stored);
} }
@ -184,16 +187,31 @@ namespace blt::gp
static_assert(std::is_trivially_copyable_v<NO_REF> && "Type must be bitwise copyable!"); static_assert(std::is_trivially_copyable_v<NO_REF> && "Type must be bitwise copyable!");
static_assert(alignof(NO_REF) <= MAX_ALIGNMENT && "Type alignment must not be greater than the max alignment!"); static_assert(alignof(NO_REF) <= MAX_ALIGNMENT && "Type alignment must not be greater than the max alignment!");
auto size = aligned_size(sizeof(NO_REF)) + bytes; auto size = aligned_size(sizeof(NO_REF)) + bytes;
#if BLT_DEBUG_LEVEL > 0
if (bytes_stored < size)
BLT_ABORT(("Not enough bytes in stack to reference " + std::to_string(size) + " bytes requested but " + std::to_string(bytes) +
" bytes stored!").c_str());
#endif
return *reinterpret_cast<NO_REF*>(data_ + bytes_stored - size); return *reinterpret_cast<NO_REF*>(data_ + bytes_stored - size);
} }
void pop_bytes(blt::size_t bytes) void pop_bytes(blt::size_t bytes)
{ {
#if BLT_DEBUG_LEVEL > 0
if (bytes_stored < bytes)
BLT_ABORT(("Not enough bytes in stack to pop " + std::to_string(bytes) + " bytes requested but " + std::to_string(bytes) +
" bytes stored!").c_str());
#endif
bytes_stored -= bytes; bytes_stored -= bytes;
} }
void transfer_bytes(stack_allocator& to, blt::size_t bytes) void transfer_bytes(stack_allocator& to, blt::size_t bytes)
{ {
#if BLT_DEBUG_LEVEL > 0
if (bytes_stored < bytes)
BLT_ABORT(("Not enough bytes in stack to transfer " + std::to_string(bytes) + " bytes requested but " + std::to_string(bytes) +
" bytes stored!").c_str());
#endif
to.copy_from(*this, aligned_size(bytes)); to.copy_from(*this, aligned_size(bytes));
pop_bytes(bytes); pop_bytes(bytes);
} }
@ -297,7 +315,7 @@ namespace blt::gp
if (!mask_r[index]) if (!mask_r[index])
return; return;
} }
from<NO_REF_T<T>>(offset).drop(); from<NO_REF_T<T >>(offset).drop();
} }
} }

View File

@ -243,7 +243,7 @@ namespace blt::gp
vals_r.pop_bytes(static_cast<blt::ptrdiff_t>(total_bytes_after + accumulate_type_sizes(begin_itr, end_itr))); vals_r.pop_bytes(static_cast<blt::ptrdiff_t>(total_bytes_after + accumulate_type_sizes(begin_itr, end_itr)));
// insert the new tree then move back the data from after the original mutation point. // insert the new tree then move back the data from after the original mutation point.
vals_r.insert(std::move(new_vals_r)); vals_r.insert(new_vals_r);
vals_r.copy_from(stack_after_data, total_bytes_after); vals_r.copy_from(stack_after_data, total_bytes_after);
auto before = begin_itr - 1; auto before = begin_itr - 1;
@ -252,7 +252,7 @@ namespace blt::gp
// this will check to make sure that the tree is in a correct and executable state. it requires that the evaluation is context free! // this will check to make sure that the tree is in a correct and executable state. it requires that the evaluation is context free!
#if BLT_DEBUG_LEVEL >= 2 #if BLT_DEBUG_LEVEL >= 2
BLT_ASSERT(new_vals_r.empty()); // BLT_ASSERT(new_vals_r.empty());
//BLT_ASSERT(stack_after.empty()); //BLT_ASSERT(stack_after.empty());
blt::size_t bytes_expected = 0; blt::size_t bytes_expected = 0;
auto bytes_size = vals_r.size().total_used_bytes; auto bytes_size = vals_r.size().total_used_bytes;
@ -690,7 +690,7 @@ namespace blt::gp
vals.copy_from(from_ptr, from_bytes); vals.copy_from(from_ptr, from_bytes);
vals.copy_from(after_ptr, after_to_bytes); vals.copy_from(after_ptr, after_to_bytes);
static std::vector<op_container_t> op_copy; static thread_local std::vector<op_container_t> op_copy;
op_copy.clear(); op_copy.clear();
op_copy.insert(op_copy.begin(), ops.begin() + from_child.start, ops.begin() + from_child.end); op_copy.insert(op_copy.begin(), ops.begin() + from_child.start, ops.begin() + from_child.end);