168 lines
5.9 KiB
C++
168 lines
5.9 KiB
C++
/*
|
|
* <Short Description>
|
|
* Copyright (C) 2025 Brett Terpstra
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "../examples/symbolic_regression.h"
|
|
#include <blt/gp/program.h>
|
|
#include <blt/std/logging.h>
|
|
|
|
using namespace blt::gp;
|
|
|
|
std::atomic_uint64_t normal_construct = 0;
|
|
std::atomic_uint64_t ephemeral_construct = 0;
|
|
std::atomic_uint64_t normal_drop = 0;
|
|
std::atomic_uint64_t ephemeral_drop = 0;
|
|
std::atomic_uint64_t max_allocated = 0;
|
|
|
|
struct drop_type
|
|
{
|
|
float* m_value;
|
|
bool ephemeral = false;
|
|
|
|
drop_type() : m_value(new float(0))
|
|
{
|
|
++normal_construct;
|
|
}
|
|
|
|
explicit drop_type(const float silly) : m_value(new float(silly))
|
|
{
|
|
++normal_construct;
|
|
}
|
|
|
|
explicit drop_type(const float silly, bool) : m_value(new float(silly)), ephemeral(true)
|
|
{
|
|
// BLT_TRACE("Constructor with value %f", silly);
|
|
++ephemeral_construct;
|
|
}
|
|
|
|
[[nodiscard]] float value() const
|
|
{
|
|
return *m_value;
|
|
}
|
|
|
|
void drop() const
|
|
{
|
|
if (ephemeral)
|
|
{
|
|
std::cout << ("Ephemeral drop") << std::endl;
|
|
++ephemeral_drop;
|
|
}else
|
|
++normal_drop;
|
|
delete m_value;
|
|
}
|
|
|
|
friend std::ostream& operator<<(std::ostream& os, const drop_type& dt)
|
|
{
|
|
os << dt.m_value;
|
|
return os;
|
|
}
|
|
};
|
|
|
|
struct context
|
|
{
|
|
float x, y;
|
|
};
|
|
|
|
prog_config_t config = prog_config_t()
|
|
.set_initial_min_tree_size(2)
|
|
.set_initial_max_tree_size(6)
|
|
.set_elite_count(2)
|
|
.set_crossover_chance(0.8)
|
|
.set_mutation_chance(0.0)
|
|
.set_reproduction_chance(0.1)
|
|
.set_max_generations(50)
|
|
.set_pop_size(500)
|
|
.set_thread_count(0);
|
|
|
|
|
|
example::symbolic_regression_t regression{691ul, config};
|
|
|
|
operation_t add{[](const drop_type a, const drop_type b) { return drop_type{a.value() + b.value()}; }, "add"};
|
|
operation_t sub([](const drop_type a, const drop_type b) { return drop_type{a.value() - b.value()}; }, "sub");
|
|
operation_t mul([](const drop_type a, const drop_type b) { return drop_type{a.value() * b.value()}; }, "mul");
|
|
operation_t pro_div([](const drop_type a, const drop_type b) { return drop_type{b.value() == 0.0f ? 0.0f : a.value() / b.value()}; }, "div");
|
|
operation_t op_sin([](const drop_type a) { return drop_type{std::sin(a.value())}; }, "sin");
|
|
operation_t op_cos([](const drop_type a) { return drop_type{std::cos(a.value())}; }, "cos");
|
|
operation_t op_exp([](const drop_type a) { return drop_type{std::exp(a.value())}; }, "exp");
|
|
operation_t op_log([](const drop_type a) { return drop_type{a.value() <= 0.0f ? 0.0f : std::log(a.value())}; }, "log");
|
|
auto lit = operation_t([]()
|
|
{
|
|
return drop_type{regression.get_program().get_random().get_float(-1.0f, 1.0f), true};
|
|
}, "lit").set_ephemeral();
|
|
|
|
operation_t op_x([](const context& context)
|
|
{
|
|
return drop_type{context.x};
|
|
}, "x");
|
|
|
|
bool fitness_function(const tree_t& current_tree, fitness_t& fitness, size_t)
|
|
{
|
|
if (normal_construct - normal_drop > max_allocated)
|
|
max_allocated = normal_construct - normal_drop;
|
|
constexpr static double value_cutoff = 1.e15;
|
|
for (auto& fitness_case : regression.get_training_cases())
|
|
{
|
|
BLT_GP_UPDATE_CONTEXT(fitness_case);
|
|
auto val = current_tree.get_evaluation_ref<drop_type>(fitness_case);
|
|
const auto diff = std::abs(fitness_case.y - val.get().value());
|
|
if (diff < value_cutoff)
|
|
{
|
|
fitness.raw_fitness += diff;
|
|
if (diff <= 0.01)
|
|
fitness.hits++;
|
|
}
|
|
else
|
|
fitness.raw_fitness += value_cutoff;
|
|
}
|
|
fitness.standardized_fitness = fitness.raw_fitness;
|
|
fitness.adjusted_fitness = (1.0 / (1.0 + fitness.standardized_fitness));
|
|
return static_cast<size_t>(fitness.hits) == regression.get_training_cases().size();
|
|
}
|
|
|
|
int main()
|
|
{
|
|
operator_builder<context> builder{};
|
|
builder.build(add, sub, mul, pro_div, op_sin, op_cos, op_exp, op_log, lit, op_x);
|
|
regression.get_program().set_operations(builder.grab());
|
|
|
|
auto& program = regression.get_program();
|
|
static auto sel = select_tournament_t{};
|
|
program.generate_population(program.get_typesystem().get_type<drop_type>().id(), fitness_function, sel, sel, sel);
|
|
while (!program.should_terminate())
|
|
{
|
|
BLT_TRACE("---------------{Begin Generation %lu}---------------", program.get_current_generation());
|
|
BLT_TRACE("Creating next generation");
|
|
program.create_next_generation();
|
|
BLT_TRACE("Move to next generation");
|
|
program.next_generation();
|
|
BLT_TRACE("Evaluate Fitness");
|
|
program.evaluate_fitness();
|
|
}
|
|
|
|
// program.get_best_individuals<1>()[0].get().tree.print(program, std::cout, true, true);
|
|
|
|
regression.get_program().get_current_pop().clear();
|
|
regression.get_program().next_generation();
|
|
regression.get_program().get_current_pop().clear();
|
|
|
|
BLT_TRACE("Created %ld times", normal_construct.load());
|
|
BLT_TRACE("Dropped %ld times", normal_drop.load());
|
|
BLT_TRACE("Ephemeral created %ld times", ephemeral_construct.load());
|
|
BLT_TRACE("Ephemeral dropped %ld times", ephemeral_drop.load());
|
|
BLT_TRACE("Max allocated %ld times", max_allocated.load());
|
|
|
|
}
|