blt-gp/include/blt/gp/util/statistics.h

207 lines
5.4 KiB
C++

#pragma once
/*
* Copyright (C) 2024 Brett Terpstra
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef BLT_GP_UTIL_STATISTICS_H
#define BLT_GP_UTIL_STATISTICS_H
#include <blt/gp/util/trackers.h>
#include <blt/gp/allocator.h>
#include <blt/gp/fwdecl.h>
namespace blt::gp
{
struct confusion_matrix_t
{
public:
confusion_matrix_t() = default;
confusion_matrix_t& is_A_predicted_A()
{
++is_A_pred_A;
return *this;
}
confusion_matrix_t& is_A_predicted_B()
{
++is_A_pred_B;
return *this;
}
confusion_matrix_t& is_B_predicted_A()
{
++is_B_pred_A;
return *this;
}
confusion_matrix_t& is_B_predicted_B()
{
++is_B_pred_B;
return *this;
}
confusion_matrix_t& set_name_a(const std::string& name_a)
{
name_A = name_a;
return *this;
}
confusion_matrix_t& set_name_b(const std::string& name_b)
{
name_B = name_b;
return *this;
}
[[nodiscard]] u64 get_is_a_pred_a() const
{
return is_A_pred_A;
}
[[nodiscard]] u64 get_is_a_pred_b() const
{
return is_A_pred_B;
}
[[nodiscard]] u64 get_is_b_pred_b() const
{
return is_B_pred_B;
}
[[nodiscard]] u64 get_is_b_pred_a() const
{
return is_B_pred_A;
}
confusion_matrix_t& operator+=(const confusion_matrix_t& op)
{
is_A_pred_A += op.is_A_pred_A;
is_B_pred_A += op.is_B_pred_A;
is_A_pred_B += op.is_A_pred_B;
is_B_pred_B += op.is_B_pred_B;
return *this;
}
confusion_matrix_t& operator/=(const u64 val)
{
is_A_pred_A /= val;
is_B_pred_A /= val;
is_A_pred_B /= val;
is_B_pred_B /= val;
return *this;
}
friend confusion_matrix_t operator+(const confusion_matrix_t& op1, const confusion_matrix_t& op2)
{
confusion_matrix_t result = op1;
result += op2;
return result;
}
friend confusion_matrix_t operator/(const confusion_matrix_t& op1, const u64 val)
{
confusion_matrix_t result = op1;
result /= val;
return result;
}
[[nodiscard]] std::string pretty_print(const std::string& table_name = "Confusion Matrix") const;
private:
u64 is_A_pred_A = 0;
u64 is_A_pred_B = 0;
u64 is_B_pred_B = 0;
u64 is_B_pred_A = 0;
std::string name_A = "A";
std::string name_B = "B";
};
struct classifier_results_t : public confusion_matrix_t
{
public:
[[nodiscard]] u64 get_hits() const
{
return hits;
}
[[nodiscard]] u64 get_size() const
{
return size;
}
[[nodiscard]] double get_percent_hit() const
{
return static_cast<double>(hits) / static_cast<double>(hits + misses);
}
void hit()
{
++hits;
}
void miss()
{
++misses;
}
private:
u64 hits = 0;
u64 misses = 0;
};
struct population_stats
{
population_stats() = default;
population_stats(const population_stats& copy):
overall_fitness(copy.overall_fitness.load()), average_fitness(copy.average_fitness.load()), best_fitness(copy.best_fitness.load()),
worst_fitness(copy.worst_fitness.load())
{
normalized_fitness.reserve(copy.normalized_fitness.size());
for (auto v : copy.normalized_fitness)
normalized_fitness.push_back(v);
}
population_stats(population_stats&& move) noexcept:
overall_fitness(move.overall_fitness.load()), average_fitness(move.average_fitness.load()), best_fitness(move.best_fitness.load()),
worst_fitness(move.worst_fitness.load()), normalized_fitness(std::move(move.normalized_fitness))
{
move.overall_fitness = 0;
move.average_fitness = 0;
move.best_fitness = 0;
move.worst_fitness = 0;
}
std::atomic<double> overall_fitness = 0;
std::atomic<double> average_fitness = 0;
std::atomic<double> best_fitness = 0;
std::atomic<double> worst_fitness = 1;
tracked_vector<double> normalized_fitness{};
void clear()
{
overall_fitness = 0;
average_fitness = 0;
best_fitness = 0;
worst_fitness = 0;
normalized_fitness.clear();
}
};
}
#endif //BLT_GP_UTIL_STATISTICS_H