207 lines
5.4 KiB
C++
207 lines
5.4 KiB
C++
#pragma once
|
|
/*
|
|
* Copyright (C) 2024 Brett Terpstra
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef BLT_GP_UTIL_STATISTICS_H
|
|
#define BLT_GP_UTIL_STATISTICS_H
|
|
|
|
#include <blt/gp/util/trackers.h>
|
|
#include <blt/gp/allocator.h>
|
|
#include <blt/gp/fwdecl.h>
|
|
|
|
namespace blt::gp
|
|
{
|
|
struct confusion_matrix_t
|
|
{
|
|
public:
|
|
confusion_matrix_t() = default;
|
|
|
|
confusion_matrix_t& is_A_predicted_A()
|
|
{
|
|
++is_A_pred_A;
|
|
return *this;
|
|
}
|
|
|
|
confusion_matrix_t& is_A_predicted_B()
|
|
{
|
|
++is_A_pred_B;
|
|
return *this;
|
|
}
|
|
|
|
confusion_matrix_t& is_B_predicted_A()
|
|
{
|
|
++is_B_pred_A;
|
|
return *this;
|
|
}
|
|
|
|
confusion_matrix_t& is_B_predicted_B()
|
|
{
|
|
++is_B_pred_B;
|
|
return *this;
|
|
}
|
|
|
|
confusion_matrix_t& set_name_a(const std::string& name_a)
|
|
{
|
|
name_A = name_a;
|
|
return *this;
|
|
}
|
|
|
|
confusion_matrix_t& set_name_b(const std::string& name_b)
|
|
{
|
|
name_B = name_b;
|
|
return *this;
|
|
}
|
|
|
|
[[nodiscard]] u64 get_is_a_pred_a() const
|
|
{
|
|
return is_A_pred_A;
|
|
}
|
|
|
|
[[nodiscard]] u64 get_is_a_pred_b() const
|
|
{
|
|
return is_A_pred_B;
|
|
}
|
|
|
|
[[nodiscard]] u64 get_is_b_pred_b() const
|
|
{
|
|
return is_B_pred_B;
|
|
}
|
|
|
|
[[nodiscard]] u64 get_is_b_pred_a() const
|
|
{
|
|
return is_B_pred_A;
|
|
}
|
|
|
|
confusion_matrix_t& operator+=(const confusion_matrix_t& op)
|
|
{
|
|
is_A_pred_A += op.is_A_pred_A;
|
|
is_B_pred_A += op.is_B_pred_A;
|
|
is_A_pred_B += op.is_A_pred_B;
|
|
is_B_pred_B += op.is_B_pred_B;
|
|
return *this;
|
|
}
|
|
|
|
confusion_matrix_t& operator/=(const u64 val)
|
|
{
|
|
is_A_pred_A /= val;
|
|
is_B_pred_A /= val;
|
|
is_A_pred_B /= val;
|
|
is_B_pred_B /= val;
|
|
return *this;
|
|
}
|
|
|
|
friend confusion_matrix_t operator+(const confusion_matrix_t& op1, const confusion_matrix_t& op2)
|
|
{
|
|
confusion_matrix_t result = op1;
|
|
result += op2;
|
|
return result;
|
|
}
|
|
|
|
friend confusion_matrix_t operator/(const confusion_matrix_t& op1, const u64 val)
|
|
{
|
|
confusion_matrix_t result = op1;
|
|
result /= val;
|
|
return result;
|
|
}
|
|
|
|
[[nodiscard]] std::string pretty_print(const std::string& table_name = "Confusion Matrix") const;
|
|
|
|
private:
|
|
u64 is_A_pred_A = 0;
|
|
u64 is_A_pred_B = 0;
|
|
u64 is_B_pred_B = 0;
|
|
u64 is_B_pred_A = 0;
|
|
std::string name_A = "A";
|
|
std::string name_B = "B";
|
|
};
|
|
|
|
struct classifier_results_t : public confusion_matrix_t
|
|
{
|
|
public:
|
|
[[nodiscard]] u64 get_hits() const
|
|
{
|
|
return hits;
|
|
}
|
|
|
|
[[nodiscard]] u64 get_size() const
|
|
{
|
|
return size;
|
|
}
|
|
|
|
[[nodiscard]] double get_percent_hit() const
|
|
{
|
|
return static_cast<double>(hits) / static_cast<double>(hits + misses);
|
|
}
|
|
|
|
void hit()
|
|
{
|
|
++hits;
|
|
}
|
|
|
|
void miss()
|
|
{
|
|
++misses;
|
|
}
|
|
|
|
|
|
private:
|
|
u64 hits = 0;
|
|
u64 misses = 0;
|
|
};
|
|
|
|
struct population_stats
|
|
{
|
|
population_stats() = default;
|
|
|
|
population_stats(const population_stats& copy):
|
|
overall_fitness(copy.overall_fitness.load()), average_fitness(copy.average_fitness.load()), best_fitness(copy.best_fitness.load()),
|
|
worst_fitness(copy.worst_fitness.load())
|
|
{
|
|
normalized_fitness.reserve(copy.normalized_fitness.size());
|
|
for (auto v : copy.normalized_fitness)
|
|
normalized_fitness.push_back(v);
|
|
}
|
|
|
|
population_stats(population_stats&& move) noexcept:
|
|
overall_fitness(move.overall_fitness.load()), average_fitness(move.average_fitness.load()), best_fitness(move.best_fitness.load()),
|
|
worst_fitness(move.worst_fitness.load()), normalized_fitness(std::move(move.normalized_fitness))
|
|
{
|
|
move.overall_fitness = 0;
|
|
move.average_fitness = 0;
|
|
move.best_fitness = 0;
|
|
move.worst_fitness = 0;
|
|
}
|
|
|
|
std::atomic<double> overall_fitness = 0;
|
|
std::atomic<double> average_fitness = 0;
|
|
std::atomic<double> best_fitness = 0;
|
|
std::atomic<double> worst_fitness = 1;
|
|
tracked_vector<double> normalized_fitness{};
|
|
|
|
void clear()
|
|
{
|
|
overall_fitness = 0;
|
|
average_fitness = 0;
|
|
best_fitness = 0;
|
|
worst_fitness = 0;
|
|
normalized_fitness.clear();
|
|
}
|
|
};
|
|
}
|
|
|
|
#endif //BLT_GP_UTIL_STATISTICS_H
|