graphs/src/main.cpp

663 lines
21 KiB
C++
Raw Normal View History

2024-04-11 20:40:12 -04:00
/*
* Copyright (C) 2024 Brett Terpstra
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <blt/gfx/window.h>
#include "blt/gfx/renderer/resource_manager.h"
#include "blt/gfx/renderer/batch_2d_renderer.h"
#include "blt/gfx/renderer/camera.h"
2024-04-16 16:07:54 -04:00
#include <blt/gfx/framebuffer.h>
2024-04-11 20:40:12 -04:00
#include <imgui.h>
2024-04-30 02:47:58 -04:00
#include <random>
#include <blt/std/ranges.h>
#include <blt/std/assert.h>
#include <blt/std/time.h>
#include <blt/math/log_util.h>
2024-04-11 20:40:12 -04:00
blt::gfx::matrix_state_manager global_matrices;
blt::gfx::resource_manager resources;
blt::gfx::batch_renderer_2d renderer_2d(resources);
2024-04-30 02:47:58 -04:00
blt::gfx::first_person_camera_2d camera;
2024-04-16 16:07:54 -04:00
blt::gfx::fbo_t render_texture;
2024-04-30 02:47:58 -04:00
blt::u64 lastTime;
double ft = 0;
double fps = 0;
int sub_ticks = 1;
namespace im = ImGui;
class node
{
private:
blt::gfx::point2d_t point;
blt::vec2 velocity;
public:
explicit node(const blt::gfx::point2d_t& point): point(point)
{}
blt::vec2& getVelocityRef()
{
return velocity;
}
blt::vec2& getPositionRef()
{
return point.pos;
}
[[nodiscard]] const blt::vec2& getPosition() const
{
return point.pos;
}
[[nodiscard]] auto& getRenderObj() const
{
return point;
}
};
class edge
{
private:
blt::u64 i1, i2;
2024-04-30 02:47:58 -04:00
public:
edge(blt::u64 i1, blt::u64 i2): i1(i1), i2(i2)
2024-04-30 02:47:58 -04:00
{
BLT_ASSERT(i1 != i2 && "Indices cannot be equal!");
}
inline friend bool operator==(edge e1, edge e2)
{
return (e1.i1 == e2.i1 || e1.i1 == e2.i2) && (e1.i2 == e2.i1 || e1.i2 == e2.i2);
}
[[nodiscard]] size_t getFirst() const
{
return i1;
}
[[nodiscard]] size_t getSecond() const
{
return i2;
}
};
struct edge_hash
{
blt::u64 operator()(const edge& e) const
{
return e.getFirst() * e.getSecond();
}
};
2024-04-30 13:28:50 -04:00
struct equation_variables
2024-04-30 02:47:58 -04:00
{
2024-04-30 13:28:50 -04:00
float repulsive_constant = 12.0;
float spring_constant = 24.0;
float ideal_spring_length = 175.0;
float initial_temperature = 69.5;
float cooling_rate = 0.999;
};
class force_equation
{
public:
using node_pair = const std::pair<blt::size_t, node>&;
protected:
const equation_variables variables;
2024-04-30 02:47:58 -04:00
2024-04-30 13:28:50 -04:00
struct equation_data
2024-04-30 02:47:58 -04:00
{
2024-04-30 13:28:50 -04:00
blt::vec2 unit;
float mag, mag_sq;
2024-04-30 02:47:58 -04:00
2024-04-30 13:28:50 -04:00
equation_data(blt::vec2 unit, float mag, float mag_sq): unit(unit), mag(mag), mag_sq(mag_sq)
{}
};
inline static blt::vec2 dir_v(node_pair v1, node_pair v2)
{
return v2.second.getPosition() - v1.second.getPosition();
2024-04-30 02:47:58 -04:00
}
2024-04-30 13:28:50 -04:00
inline static equation_data calc_data(node_pair v1, node_pair v2)
2024-04-30 02:47:58 -04:00
{
2024-04-30 13:28:50 -04:00
auto dir = dir_v(v1, v2);
2024-04-30 02:47:58 -04:00
auto mag = dir.magnitude();
auto unit = mag == 0 ? blt::vec2() : dir / mag;
auto mag_sq = mag * mag;
2024-04-30 13:28:50 -04:00
return {unit, mag, mag_sq};
}
public:
explicit force_equation(const equation_variables& variables): variables(variables)
{}
[[nodiscard]] virtual blt::vec2 attr(node_pair v1, node_pair v2) const = 0;
[[nodiscard]] virtual blt::vec2 rep(node_pair v1, node_pair v2) const = 0;
[[nodiscard]] virtual std::string name() const = 0;
[[nodiscard]] virtual float cooling_factor(int t) const
{
return static_cast<float>(variables.initial_temperature * std::pow(variables.cooling_rate, t));
}
virtual ~force_equation() = default;
};
class Eades_equation : public force_equation
{
public:
explicit Eades_equation(const equation_variables& variables): force_equation(variables)
{}
[[nodiscard]] blt::vec2 attr(node_pair v1, node_pair v2) const final
{
auto data = calc_data(v1, v2);
auto ideal = std::log(data.mag / variables.ideal_spring_length);
return variables.spring_constant * ideal * data.unit;
}
[[nodiscard]] blt::vec2 rep(node_pair v1, node_pair v2) const final
{
auto data = calc_data(v1, v2);
auto scale = variables.repulsive_constant / data.mag_sq;
return scale * -data.unit;
}
[[nodiscard]] std::string name() const final
{
return "Eades";
}
};
class Fruchterman_Reingold_equation : public force_equation
{
public:
explicit Fruchterman_Reingold_equation(const equation_variables& variables): force_equation(variables)
{}
[[nodiscard]] blt::vec2 attr(node_pair v1, node_pair v2) const final
{
auto data = calc_data(v1, v2);
float scale = data.mag_sq / variables.ideal_spring_length;
return scale * data.unit;
}
[[nodiscard]] blt::vec2 rep(node_pair v1, node_pair v2) const final
{
auto data = calc_data(v1, v2);
2024-04-30 02:47:58 -04:00
2024-04-30 13:28:50 -04:00
float scale = (variables.ideal_spring_length * variables.ideal_spring_length) / data.mag;
return scale * -data.unit;
}
[[nodiscard]] float cooling_factor(int t) const override
{
return force_equation::cooling_factor(t) * 0.025f;
2024-04-30 02:47:58 -04:00
}
2024-04-30 13:28:50 -04:00
[[nodiscard]] std::string name() const final
2024-04-30 02:47:58 -04:00
{
2024-04-30 13:28:50 -04:00
return "Fruchterman & Reingold";
2024-04-30 02:47:58 -04:00
}
2024-04-30 13:28:50 -04:00
};
struct bounding_box
{
int min_x = 0;
int min_y = 0;
int max_x = 0;
int max_y = 0;
bounding_box(int min_x, int min_y, int max_x, int max_y): min_x(min_x), min_y(min_y), max_x(max_x), max_y(max_y)
{}
bool is_screen = true;
};
class graph
{
private:
std::vector<node> nodes;
blt::hashset_t<edge, edge_hash> edges;
blt::hashmap_t<blt::u64, blt::hashset_t<blt::u64>> connected_nodes;
bool sim = false;
float sim_speed = 1;
float threshold = 0.01;
float max_force_last = 1;
int current_iterations = 0;
int max_iterations = 5000;
equation_variables variables;
std::unique_ptr<force_equation> equation;
static constexpr float POINT_SIZE = 35;
2024-04-30 02:47:58 -04:00
2024-04-30 13:28:50 -04:00
void create_random_graph(bounding_box bb, blt::size_t min_nodes, blt::size_t max_nodes, blt::f64 connectivity)
2024-04-30 02:47:58 -04:00
{
// don't allow points too close to the edges of the window.
2024-04-30 13:28:50 -04:00
if (bb.is_screen)
{
bb.max_x -= POINT_SIZE;
bb.max_y -= POINT_SIZE;
bb.min_x += POINT_SIZE;
bb.min_y += POINT_SIZE;
}
2024-04-30 02:47:58 -04:00
static std::random_device dev;
static std::uniform_real_distribution chance(0.0, 1.0);
std::uniform_int_distribution node_count_dist(min_nodes, max_nodes);
2024-04-30 13:28:50 -04:00
std::uniform_real_distribution pos_x_dist(static_cast<blt::f32>(bb.min_x), static_cast<blt::f32>(bb.max_x));
std::uniform_real_distribution pos_y_dist(static_cast<blt::f32>(bb.min_y), static_cast<blt::f32>(bb.max_y));
2024-04-30 02:47:58 -04:00
auto node_count = node_count_dist(dev);
for (blt::size_t i = 0; i < node_count; i++)
{
float x, y;
do
{
bool can_break = true;
x = pos_x_dist(dev);
y = pos_y_dist(dev);
for (const auto& node : nodes)
{
const auto& rp = node.getRenderObj().pos;
float dx = rp.x() - x;
float dy = rp.y() - y;
float dist = std::sqrt(dx * dx + dy * dy);
if (dist <= POINT_SIZE)
{
can_break = false;
break;
}
}
if (can_break)
break;
} while (true);
nodes.push_back(node({x, y, POINT_SIZE}));
}
for (const auto& node1 : blt::enumerate(nodes))
{
for (const auto& node2 : blt::enumerate(nodes))
{
if (node1.first == node2.first)
continue;
if (chance(dev) <= connectivity)
connect(node1.first, node2.first);
}
}
std::uniform_int_distribution node_select_dist(0ul, nodes.size() - 1);
for (blt::size_t i = 0; i < nodes.size(); i++)
{
if (connected_nodes[i].size() <= 1)
{
for (blt::size_t j = connected_nodes[i].size(); j < 2; j++)
{
blt::u64 select;
do
{
select = node_select_dist(dev);
if (select != i && !connected_nodes[i].contains(select))
break;
} while (true);
connect(i, select);
}
}
}
}
public:
graph() = default;
2024-04-30 13:28:50 -04:00
graph(const bounding_box& bb, blt::size_t min_nodes, blt::size_t max_nodes, blt::f64 connectivity)
2024-04-30 02:47:58 -04:00
{
2024-04-30 13:28:50 -04:00
create_random_graph(bb, min_nodes, max_nodes, connectivity);
use_Eades();
2024-04-30 02:47:58 -04:00
}
2024-04-30 13:28:50 -04:00
void reset(const bounding_box& bb, blt::size_t min_nodes, blt::size_t max_nodes, blt::f64 connectivity)
2024-04-30 02:47:58 -04:00
{
sim = false;
current_iterations = 0;
max_force_last = 1.0;
nodes.clear();
edges.clear();
connected_nodes.clear();
2024-04-30 13:28:50 -04:00
create_random_graph(bb, min_nodes, max_nodes, connectivity);
2024-04-30 02:47:58 -04:00
}
void connect(blt::u64 n1, blt::u64 n2)
{
edges.insert(edge{n1, n2});
connected_nodes[n1].insert(n2);
connected_nodes[n2].insert(n1);
}
[[nodiscard]] bool connected(blt::u64 e1, blt::u64 e2) const
{
return edges.contains({e1, e2});
}
void render(double frame_time)
{
if (sim && current_iterations < max_iterations && max_force_last > threshold)
{
for (int _ = 0; _ < sub_ticks; _++)
{
// calculate new forces
for (const auto& v1 : blt::enumerate(nodes))
{
blt::vec2 attractive;
blt::vec2 repulsive;
for (const auto& v2 : blt::enumerate(nodes))
{
if (v1.first == v2.first)
continue;
2024-04-30 13:28:50 -04:00
attractive += equation->attr(v1, v2);
repulsive += equation->rep(v1, v2);
2024-04-30 02:47:58 -04:00
}
v1.second.getVelocityRef() = attractive + repulsive;
}
max_force_last = 0;
// update positions
for (auto& v : nodes)
{
2024-04-30 13:28:50 -04:00
float sim_factor = static_cast<float>(frame_time * sim_speed) * 0.05f;
v.getPositionRef() += v.getVelocityRef() * equation->cooling_factor(current_iterations) * sim_factor;
2024-04-30 02:47:58 -04:00
max_force_last = std::max(max_force_last, v.getVelocityRef().magnitude());
}
current_iterations++;
}
}
for (const auto& point : nodes)
renderer_2d.drawPointInternal("parker", point.getRenderObj(), 10.0f);
for (const auto& edge : edges)
{
if (edge.getFirst() >= nodes.size() || edge.getSecond() >= nodes.size())
{
BLT_WARN("Edge Error %ld %ld %ld", edge.getFirst(), edge.getSecond(), nodes.size());
} else
{
auto n1 = nodes[edge.getFirst()];
auto n2 = nodes[edge.getSecond()];
renderer_2d.drawLine(blt::make_color(0, 1, 0), 5.0f, n1.getRenderObj().pos, n2.getRenderObj().pos, 2.0f);
}
}
}
2024-04-30 13:28:50 -04:00
void use_Eades()
{
equation = std::make_unique<Eades_equation>(variables);
}
void use_Fruchterman_Reingold()
{
equation = std::make_unique<Fruchterman_Reingold_equation>(variables);
}
2024-04-30 02:47:58 -04:00
void start_sim()
{
sim = true;
}
void stop_sim()
{
sim = false;
}
2024-04-30 13:28:50 -04:00
std::string getSimulatorName()
{
return equation->name();
}
2024-04-30 02:47:58 -04:00
float& getSimSpeed()
{
return sim_speed;
}
float& getThreshold()
{
return threshold;
}
float& getSpringConstant()
{
2024-04-30 13:28:50 -04:00
return variables.spring_constant;
2024-04-30 02:47:58 -04:00
}
float& getInitialTemperature()
{
2024-04-30 13:28:50 -04:00
return variables.initial_temperature;
2024-04-30 02:47:58 -04:00
}
float& getCoolingRate()
{
2024-04-30 13:28:50 -04:00
return variables.cooling_rate;
2024-04-30 02:47:58 -04:00
}
float& getIdealSpringLength()
{
2024-04-30 13:28:50 -04:00
return variables.ideal_spring_length;
2024-04-30 02:47:58 -04:00
}
float& getRepulsionConstant()
{
2024-04-30 13:28:50 -04:00
return variables.repulsive_constant;
2024-04-30 02:47:58 -04:00
}
int& getMaxIterations()
{
return max_iterations;
}
[[nodiscard]] int numberOfNodes() const
{
return static_cast<int>(nodes.size());
}
};
graph main_graph;
2024-04-11 20:40:12 -04:00
2024-04-26 18:05:00 -04:00
#ifdef __EMSCRIPTEN__
2024-04-30 02:47:58 -04:00
std::string resource_prefix = "../";
2024-04-26 18:05:00 -04:00
#else
2024-04-30 02:47:58 -04:00
std::string resource_prefix = "../";
2024-04-26 18:05:00 -04:00
#endif
2024-04-30 02:47:58 -04:00
void init(const blt::gfx::window_data& data)
2024-04-11 20:40:12 -04:00
{
using namespace blt::gfx;
2024-04-26 18:05:00 -04:00
resources.setPrefixDirectory(resource_prefix);
2024-04-11 20:40:12 -04:00
2024-04-26 18:05:00 -04:00
resources.enqueue("res/debian.png", "debian");
resources.enqueue("res/parker.png", "parker");
resources.enqueue("res/parker cat ears.jpg", "parkercat");
2024-04-18 03:53:20 -04:00
2024-04-11 20:40:12 -04:00
global_matrices.create_internals();
resources.load_resources();
renderer_2d.create();
2024-04-16 16:07:54 -04:00
2024-04-30 13:28:50 -04:00
bounding_box bb(0, 0, data.width, data.height);
main_graph = graph(bb, 5, 25, 0.2);
2024-04-30 02:47:58 -04:00
lastTime = blt::system::nanoTime();
2024-04-19 03:22:28 -04:00
//render_texture = fbo_t::make_multisample_render_texture(1440, 720, 4);
2024-04-30 02:47:58 -04:00
//render_texture = fbo_t::make_multisample_render_target(1440, 720, 8);
2024-04-19 03:22:28 -04:00
//render_texture = fbo_t::make_render_target(1440, 720);
//render_texture = fbo_t::make_render_texture(1440, 720);
2024-04-11 20:40:12 -04:00
}
2024-04-12 15:52:19 -04:00
float x = 50, y = 50;
float sx = 0.5, sy = 0.5;
float ax = 0.05, ay = 0.05;
2024-04-30 02:47:58 -04:00
void update(const blt::gfx::window_data& data)
2024-04-11 20:40:12 -04:00
{
2024-04-30 02:47:58 -04:00
global_matrices.update_perspectives(data.width, data.height, 90, 0.1, 2000);
2024-04-11 20:40:12 -04:00
2024-04-12 15:52:19 -04:00
x += sx;
y += sx;
sx += ax;
sy += ay;
if (x > 256)
sx *= -1;
if (y > 256)
sy *= -1;
2024-04-30 02:47:58 -04:00
//im::ShowDemoWindow();
if (im::Begin("Controls", nullptr, ImGuiWindowFlags_AlwaysAutoResize))
{
static int min_nodes = 5;
static int max_nodes = 25;
2024-04-30 13:28:50 -04:00
static bounding_box bb {0, 0, data.width, data.height};
2024-04-30 02:47:58 -04:00
static float connectivity = 0.12;
//im::SetNextItemOpen(true, ImGuiCond_Once);
im::Text("FPS: %lf Frame-time (ms): %lf Frame-time (S): %lf", fps, ft * 1000.0, ft);
im::Text("Number of Nodes: %d", main_graph.numberOfNodes());
2024-04-30 13:28:50 -04:00
im::SetNextItemOpen(true, ImGuiCond_Once);
if (im::CollapsingHeader("Help"))
{
}
2024-04-30 02:47:58 -04:00
if (im::CollapsingHeader("Graph Generation Settings"))
{
2024-04-30 13:28:50 -04:00
im::Checkbox("Screen Auto-Scale", &bb.is_screen);
if (im::CollapsingHeader("Spawning Area"))
{
bool result = false;
result |= im::InputInt("Min X", &bb.min_x, 5, 100);
result |= im::InputInt("Max X", &bb.max_x, 5, 100);
result |= im::InputInt("Min Y", &bb.min_y, 5, 100);
result |= im::InputInt("Max Y", &bb.max_y, 5, 100);
if (result)
{
bb.is_screen = false;
}
}
if (bb.is_screen)
{
bb.max_x = data.width;
bb.max_y = data.height;
bb.min_x = 0;
bb.min_y = 0;
}
im::SeparatorText("Node Settings");
2024-04-30 02:47:58 -04:00
im::InputInt("Min Nodes", &min_nodes);
im::InputInt("Max Nodes", &max_nodes);
im::SliderFloat("Connectivity", &connectivity, 0, 1);
if (im::Button("Reset Graph"))
{
2024-04-30 13:28:50 -04:00
main_graph.reset(bb, min_nodes, max_nodes, connectivity);
2024-04-30 02:47:58 -04:00
}
}
im::SetNextItemOpen(true, ImGuiCond_Once);
if (im::CollapsingHeader("Simulation Settings"))
{
im::InputInt("Max Iterations", &main_graph.getMaxIterations());
im::InputInt("Sub-ticks Per Frame", &sub_ticks);
im::InputFloat("Threshold", &main_graph.getThreshold(), 0.01, 1);
im::InputFloat("Repulsive Constant", &main_graph.getRepulsionConstant(), 0.25, 10);
im::InputFloat("Spring Constant", &main_graph.getSpringConstant(), 0.25, 10);
im::InputFloat("Ideal Spring Length", &main_graph.getIdealSpringLength(), 2.5, 10);
im::SliderFloat("Initial Temperature", &main_graph.getInitialTemperature(), 1, 100);
im::SliderFloat("Cooling Rate", &main_graph.getCoolingRate(), 0, 0.999999, "%.6f");
im::SliderFloat("Simulation Speed", &main_graph.getSimSpeed(), 0, 4);
if (im::Button("Start"))
main_graph.start_sim();
im::SameLine();
if (im::Button("Stop"))
main_graph.stop_sim();
2024-04-30 13:28:50 -04:00
}
im::SetNextItemOpen(true, ImGuiCond_Once);
if (im::CollapsingHeader("System Controls"))
{
//im::Text("Current System: %s", main_graph.getSimulatorName().c_str());
//im::
auto current_sim = main_graph.getSimulatorName();
const char* items[] = {"Eades", "Fruchterman & Reingold"};
static int item_current = 0;
ImGui::ListBox("", &item_current, items, IM_ARRAYSIZE(items), 4);
if (strcmp(items[item_current], current_sim.c_str()) != 0)
{
switch (item_current)
{
case 0:
main_graph.use_Eades();
BLT_INFO("Using Eades");
break;
case 1:
main_graph.use_Fruchterman_Reingold();
BLT_INFO("Using Fruchterman & Reingold");
break;
default:
BLT_WARN("This is not a valid selection! How did we get here?");
break;
}
}
2024-04-30 02:47:58 -04:00
}
im::End();
}
//renderer_2d.drawLine(blt::vec4{1, 0, 1, 1}, 0.0f, blt::vec2{x, y}, blt::vec2{500, 500}, 5.0f);
//renderer_2d.drawLine(blt::vec4{1, 0, 0, 1}, 0.0f, blt::vec2{0, 150}, blt::vec2{240, 0}, 12.0f);
//renderer_2d.drawPoint(blt::vec4{0, 1, 0, 1}, 1.0f, blt::vec2{500, 500}, 50.0f);
//renderer_2d.drawPoint("parkercat", 1.0f, blt::vec2{800, 500}, 256.0f);
main_graph.render(ft);
2024-04-12 15:52:19 -04:00
2024-04-11 20:40:12 -04:00
camera.update();
camera.update_view(global_matrices);
global_matrices.update();
renderer_2d.render();
2024-04-30 02:47:58 -04:00
auto currentTime = blt::system::nanoTime();
auto diff = currentTime - lastTime;
lastTime = currentTime;
ft = static_cast<double>(diff) / 1000000000.0;
fps = 1 / ft;
2024-04-11 20:40:12 -04:00
}
2024-04-30 02:47:58 -04:00
int main(int, const char**)
2024-04-11 20:40:12 -04:00
{
2024-04-14 17:37:08 -04:00
blt::gfx::init(blt::gfx::window_data{"My Sexy Window", init, update, 1440, 720}.setSyncInterval(1));
2024-04-11 20:40:12 -04:00
global_matrices.cleanup();
resources.cleanup();
renderer_2d.cleanup();
blt::gfx::cleanup();
2024-04-26 01:11:24 -04:00
return 0;
2024-04-11 20:40:12 -04:00
}