COSC-3P93-Project/Step 2/include/math/vectors.h

161 lines
5.8 KiB
C
Raw Normal View History

/*
* Created by Brett Terpstra 6920201 on 14/10/22.
* Copyright (c) Brett Terpstra 2022 All Rights Reserved
*/
#ifndef STEP_2_VECTORS_H
#define STEP_2_VECTORS_H
#include <cmath>
#include "util/std.h"
namespace Raytracing {
// when running on the CPU it's fine to be a double
// if your CPU is older (32bit) and has issues with doubles, consider changing it to a float
// but if we move to the GPU it has to be a float.
// since GPUs generally are far more optimized for floats
typedef double PRECISION_TYPE;
class vec4 {
2022-10-15 16:34:29 -04:00
private:
union xType {
PRECISION_TYPE x;
PRECISION_TYPE r;
};
union yType {
PRECISION_TYPE y;
PRECISION_TYPE g;
};
union zType {
PRECISION_TYPE z;
PRECISION_TYPE b;
};
union wType {
PRECISION_TYPE w;
PRECISION_TYPE a;
};
struct valueType {
xType v1;
yType v2;
zType v3;
wType v4;
};
// isn't much of a reason to do it this way
// beyond I wanted an explicit immutable vector type of length 4
// that could be used as both x,y,z + w? and rgba
// it's unlikely that we'll need to use the w component
// but it helps better line up with the GPU
// and floating point units (especially on GPUs) tend to be aligned to 4*sizeof(float)
valueType value;
public:
vec4() : value{0, 0, 0, 0} {}
vec4(PRECISION_TYPE x, PRECISION_TYPE y, PRECISION_TYPE z) : value{x, y, z, 0} {}
vec4(PRECISION_TYPE x, PRECISION_TYPE y, PRECISION_TYPE z, PRECISION_TYPE w) : value{x, y, z, w} {}
vec4(const vec4& vec) : value{vec.x(), vec.y(), vec.z(), vec.w()} {}
// most of the modern c++ here is because clang tidy was annoying me
[[nodiscard]] inline PRECISION_TYPE x() const { return value.v1.x; }
[[nodiscard]] inline PRECISION_TYPE y() const { return value.v2.y; }
[[nodiscard]] inline PRECISION_TYPE z() const { return value.v3.z; }
[[nodiscard]] inline PRECISION_TYPE w() const { return value.v4.w; }
[[nodiscard]] inline PRECISION_TYPE r() const { return value.v1.r; }
[[nodiscard]] inline PRECISION_TYPE g() const { return value.v2.g; }
[[nodiscard]] inline PRECISION_TYPE b() const { return value.v3.b; }
[[nodiscard]] inline PRECISION_TYPE a() const { return value.v4.a; }
// negation operator
vec4 operator-() const { return {-x(), -y(), -z(), -w()}; }
[[nodiscard]] inline PRECISION_TYPE magnitude() const {
2022-10-16 17:53:33 -04:00
return sqrt(lengthSquared());
2022-10-15 16:34:29 -04:00
}
2022-10-16 17:53:33 -04:00
[[nodiscard]] inline PRECISION_TYPE lengthSquared() const {
2022-10-15 16:34:29 -04:00
return x() * x() + y() * y() + z() * z() + w() * w();
}
// returns the unit-vector.
[[nodiscard]] inline vec4 normalize() const {
PRECISION_TYPE mag = magnitude();
return {x() / mag, y() / mag, z() / mag, w() / mag};
}
// add operator before the vec returns the magnitude
PRECISION_TYPE operator+() const {
return magnitude();
}
// preforms the dot product of left * right
static inline PRECISION_TYPE dot(const vec4& left, const vec4& right) {
return left.x() * right.x()
+ left.y() * right.y()
2022-10-16 17:53:33 -04:00
+ left.z() * right.z();
2022-10-15 16:34:29 -04:00
}
// preforms the cross product of left X right
// since a general solution to the cross product doesn't exist in 4d
// we are going to ignore the w.
static inline vec4 cross(const vec4& left, const vec4& right) {
return {left.y() * right.z() - left.z() * right.y(),
left.z() * right.x() - left.x() * right.z(),
left.x() * right.y() - left.y() * right.x()};
}
};
// Utility Functions
// useful for printing out the vector to stdout
inline std::ostream& operator<<(std::ostream& out, const vec4& v) {
return out << "vec4{" << v.x() << ", " << v.y() << ", " << v.z() << ", " << v.w() << "} ";
}
// adds the two vectors left and right
inline const vec4 operator+(const vec4& left, const vec4& right) {
return vec4(left.x() + right.x(), left.y() + right.y(), left.z() + right.z(), left.w() + right.w());
}
// subtracts the right vector from the left.
inline const vec4 operator-(const vec4& left, const vec4& right) {
return vec4(left.x() - right.x(), left.y() - right.y(), left.z() - right.z(), left.w() - right.w());
}
// multiples the left with the right
inline const vec4 operator*(const vec4& left, const vec4& right) {
return vec4(left.x() * right.x(), left.y() * right.y(), left.z() * right.z(), left.w() * right.w());
}
// multiplies the const c with each element in the vector v
inline const vec4 operator*(const PRECISION_TYPE c, const vec4& v) {
return vec4(c * v.x(), c * v.y(), c * v.z(), c * v.w());
}
// same as above but for right sided constants
inline const vec4 operator*(const vec4& v, PRECISION_TYPE c) {
return c * v;
}
// divides the vector by the constant c
inline const vec4 operator/(const vec4& v, PRECISION_TYPE c) {
return vec4(v.x() / c, v.y() / c, v.z() / c, v.w() / c);
}
// divides the constant by the magnitude of the vector
inline const PRECISION_TYPE operator/(PRECISION_TYPE c, const vec4& v) {
return c / +v;
}
}
#endif //STEP_2_VECTORS_H