blt-gp/include/blt/gp/program.h

785 lines
38 KiB
C
Raw Normal View History

2024-06-02 21:27:00 -04:00
#pragma once
/*
* Copyright (C) 2024 Brett Terpstra
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef BLT_GP_PROGRAM_H
#define BLT_GP_PROGRAM_H
2024-06-04 21:52:43 -04:00
#include <cstddef>
2024-06-02 21:27:00 -04:00
#include <functional>
#include <type_traits>
2024-06-03 02:29:51 -04:00
#include <string_view>
#include <string>
#include <utility>
#include <iostream>
2024-06-29 10:47:27 -04:00
#include <algorithm>
#include <memory>
2024-07-09 21:57:18 -04:00
#include <array>
2024-07-11 21:14:23 -04:00
#include <thread>
#include <mutex>
#include <atomic>
2024-07-13 15:36:49 -04:00
#include <condition_variable>
#include <stdexcept>
2024-06-21 22:04:57 -04:00
#include <blt/std/ranges.h>
#include <blt/std/hashmap.h>
#include <blt/std/types.h>
#include <blt/std/utility.h>
2024-08-03 19:51:38 -04:00
#include <blt/std/meta.h>
#include <blt/std/memory.h>
2024-07-14 14:08:39 -04:00
#include <blt/std/thread.h>
#include <blt/gp/fwdecl.h>
2024-06-21 22:04:57 -04:00
#include <blt/gp/typesystem.h>
#include <blt/gp/operations.h>
#include <blt/gp/transformers.h>
2024-07-09 03:57:58 -04:00
#include <blt/gp/selection.h>
2024-06-21 22:04:57 -04:00
#include <blt/gp/tree.h>
#include <blt/gp/stack.h>
#include <blt/gp/config.h>
#include <blt/gp/random.h>
2024-06-02 21:27:00 -04:00
namespace blt::gp
{
2024-06-24 21:56:51 -04:00
struct argc_t
{
blt::u32 argc = 0;
blt::u32 argc_context = 0;
[[nodiscard]] bool is_terminal() const
{
return argc == 0;
}
2024-06-24 21:56:51 -04:00
};
2024-06-30 03:20:56 -04:00
struct operator_info
{
// types of the arguments
std::vector<type_id> argument_types;
// return type of this operator
type_id return_type;
// number of arguments for this operator
argc_t argc;
2024-08-20 13:52:06 -04:00
// per operator function callable (slow)
detail::operator_func_t func;
2024-06-30 03:20:56 -04:00
};
2024-06-29 10:47:27 -04:00
struct operator_storage
{
// indexed from return TYPE ID, returns index of operator
blt::expanding_buffer<std::vector<operator_id>> terminals;
blt::expanding_buffer<std::vector<operator_id>> non_terminals;
2024-06-29 14:03:57 -04:00
blt::expanding_buffer<std::vector<std::pair<operator_id, blt::size_t>>> operators_ordered_terminals;
2024-06-29 10:47:27 -04:00
// indexed from OPERATOR ID (operator number)
blt::hashset_t<operator_id> static_types;
std::vector<operator_info> operators;
std::vector<detail::print_func_t> print_funcs;
2024-08-12 13:48:06 -04:00
std::vector<detail::destroy_func_t> destroy_funcs;
std::vector<std::optional<std::string_view>> names;
2024-08-20 13:07:33 -04:00
detail::eval_func_t eval_func;
2024-06-29 10:47:27 -04:00
};
template<typename Context = detail::empty_t>
2024-06-29 10:47:27 -04:00
class operator_builder
{
friend class gp_program;
2024-06-24 21:56:51 -04:00
2024-06-24 14:00:08 -04:00
friend class blt::gp::detail::operator_storage_test;
public:
2024-06-29 10:47:27 -04:00
explicit operator_builder(type_provider& system): system(system)
2024-08-07 01:58:53 -04:00
{}
2024-08-20 13:07:33 -04:00
template<typename... Operators>
operator_storage& build(Operators& ... operators)
{
2024-08-20 13:07:33 -04:00
std::vector<blt::size_t> sizes;
(sizes.push_back(add_operator(operators)), ...);
blt::size_t largest = 0;
for (auto v : sizes)
largest = std::max(v, largest);
2024-06-24 21:56:51 -04:00
2024-08-20 13:07:33 -04:00
storage.eval_func = [&operators..., largest](const tree_t& tree, void* context) {
const auto& ops = tree.get_operations();
const auto& vals = tree.get_values();
evaluation_context results{};
2024-08-20 21:58:29 -04:00
results.values.reserve(largest);
2024-08-20 13:07:33 -04:00
static thread_local detail::bitmask_t bitfield;
bitfield.clear();
2024-08-20 21:58:29 -04:00
blt::size_t total_so_far = 0;
2024-08-20 13:07:33 -04:00
for (const auto& operation : blt::reverse_iterate(ops.begin(), ops.end()))
2024-08-12 13:48:06 -04:00
{
2024-08-20 13:07:33 -04:00
if (operation.is_value)
{
2024-08-20 21:58:29 -04:00
total_so_far += stack_allocator::aligned_size(operation.type_size);
results.values.copy_from(vals.from(total_so_far), stack_allocator::aligned_size(operation.type_size));
2024-08-20 13:07:33 -04:00
bitfield.push_back(false);
continue;
}
2024-08-20 21:58:29 -04:00
call_jmp_table(operation.id, context, results.values, results.values, &bitfield, operators...);
2024-08-20 13:07:33 -04:00
bitfield.push_back(true);
2024-08-12 13:48:06 -04:00
}
2024-08-20 13:07:33 -04:00
return results;
};
2024-06-29 10:47:27 -04:00
blt::hashset_t<type_id> has_terminals;
for (const auto& v : blt::enumerate(storage.terminals))
{
if (!v.second.empty())
has_terminals.insert(v.first);
}
for (const auto& op_r : blt::enumerate(storage.non_terminals))
{
if (op_r.second.empty())
continue;
auto return_type = op_r.first;
std::vector<std::pair<operator_id, blt::size_t>> ordered_terminals;
for (const auto& op : op_r.second)
{
// count number of terminals
blt::size_t terminals = 0;
for (const auto& type : storage.operators[op].argument_types)
2024-06-29 10:47:27 -04:00
{
if (has_terminals.contains(type))
2024-06-29 10:47:27 -04:00
terminals++;
}
ordered_terminals.emplace_back(op, terminals);
}
2024-06-29 14:03:57 -04:00
bool found_terminal_inputs = false;
bool matches_argc = false;
2024-06-29 10:47:27 -04:00
for (const auto& terms : ordered_terminals)
{
if (terms.second == storage.operators[terms.first].argc.argc)
2024-06-29 14:03:57 -04:00
matches_argc = true;
2024-06-29 10:47:27 -04:00
if (terms.second != 0)
2024-06-29 14:03:57 -04:00
found_terminal_inputs = true;
if (matches_argc && found_terminal_inputs)
2024-06-29 10:47:27 -04:00
break;
}
2024-06-29 14:03:57 -04:00
if (!found_terminal_inputs)
BLT_ABORT(("Failed to find function with terminal arguments for return type " + std::to_string(return_type)).c_str());
if (!matches_argc)
2024-06-29 10:47:27 -04:00
{
2024-06-29 14:03:57 -04:00
BLT_ABORT(("Failed to find a function which purely translates types "
"(that is all input types are terminals) for return type " + std::to_string(return_type)).c_str());
2024-06-29 10:47:27 -04:00
}
std::sort(ordered_terminals.begin(), ordered_terminals.end(), [](const auto& a, const auto& b) {
return a.second > b.second;
});
2024-06-29 14:03:57 -04:00
auto first_size = *ordered_terminals.begin();
auto iter = ordered_terminals.begin();
while (++iter != ordered_terminals.end() && iter->second == first_size.second)
{}
ordered_terminals.erase(iter, ordered_terminals.end());
storage.operators_ordered_terminals[return_type] = ordered_terminals;
2024-06-29 10:47:27 -04:00
}
2024-08-07 01:58:53 -04:00
return storage;
}
operator_storage&& grab()
{
2024-06-29 10:47:27 -04:00
return std::move(storage);
}
private:
2024-08-20 13:07:33 -04:00
template<typename RawFunction, typename Return, typename... Args>
auto add_operator(operation_t<RawFunction, Return(Args...)>& op)
{
auto total_size_required = stack_allocator::aligned_size(sizeof(Return));
2024-08-20 21:58:29 -04:00
((total_size_required += stack_allocator::aligned_size(sizeof(Args))), ...);
2024-08-20 13:07:33 -04:00
auto return_type_id = system.get_type<Return>().id();
auto operator_id = blt::gp::operator_id(storage.operators.size());
op.id = operator_id;
operator_info info;
if constexpr (sizeof...(Args) > 0)
{
(add_non_context_argument<detail::remove_cv_ref<Args>>(info.argument_types), ...);
}
info.argc.argc_context = info.argc.argc = sizeof...(Args);
info.return_type = return_type_id;
2024-08-20 13:52:06 -04:00
info.func = op.template make_callable<Context>();
2024-08-20 13:07:33 -04:00
((std::is_same_v<detail::remove_cv_ref<Args>, Context> ? info.argc.argc -= 1 : (blt::size_t) nullptr), ...);
auto& operator_list = info.argc.argc == 0 ? storage.terminals : storage.non_terminals;
operator_list[return_type_id].push_back(operator_id);
BLT_ASSERT(info.argc.argc_context - info.argc.argc <= 1 && "Cannot pass multiple context as arguments!");
storage.operators.push_back(info);
storage.print_funcs.push_back([&op](std::ostream& out, stack_allocator& stack) {
if constexpr (blt::meta::is_streamable_v<Return>)
{
out << stack.from<Return>(0);
(void) (op); // remove warning
} else
{
out << "[Printing Value on '" << (op.get_name() ? *op.get_name() : "") << "' Not Supported!]";
}
});
storage.destroy_funcs.push_back([](detail::destroy_t type, detail::bitmask_t* mask, stack_allocator& alloc) {
switch (type)
{
case detail::destroy_t::ARGS:
alloc.call_destructors<Args...>(mask);
break;
case detail::destroy_t::RETURN:
if constexpr (detail::has_func_drop_v<remove_cvref_t<Return>>)
{
alloc.from<detail::remove_cv_ref<Return>>(0).drop();
}
break;
}
});
storage.names.push_back(op.get_name());
if (op.is_ephemeral())
storage.static_types.insert(operator_id);
return total_size_required;
}
2024-06-26 20:24:58 -04:00
template<typename T>
void add_non_context_argument(decltype(operator_info::argument_types)& types)
2024-06-26 20:24:58 -04:00
{
if constexpr (!std::is_same_v<Context, detail::remove_cv_ref<T>>)
{
types.push_back(system.get_type<T>().id());
2024-06-26 20:24:58 -04:00
}
}
2024-08-20 21:58:29 -04:00
template<typename Lambda>
static inline void execute(void* context, stack_allocator& write_stack, stack_allocator& read_stack, detail::bitmask_t* mask,
Lambda& lambda)
2024-08-20 13:07:33 -04:00
{
2024-08-20 21:58:29 -04:00
if constexpr (std::is_same_v<detail::remove_cv_ref<typename Lambda::First_Arg>, Context>)
2024-08-20 13:07:33 -04:00
{
2024-08-20 21:58:29 -04:00
write_stack.push(lambda(context, read_stack, mask));
} else
{
write_stack.push(lambda(read_stack, mask));
}
}
template<blt::size_t id, typename Lambda>
static inline bool call(blt::size_t op, void* context, stack_allocator& write_stack, stack_allocator& read_stack, detail::bitmask_t* mask,
Lambda& lambda)
{
if (id == op)
{
execute(context, write_stack, read_stack, mask, lambda);
2024-08-20 13:07:33 -04:00
return false;
}
return true;
}
template<typename... Lambdas, size_t... operator_ids>
static inline void call_jmp_table_internal(size_t op, void* context, stack_allocator& write_stack, stack_allocator& read_stack,
2024-08-20 21:58:29 -04:00
detail::bitmask_t* mask, std::integer_sequence<size_t, operator_ids...>, Lambdas& ... lambdas)
2024-08-20 13:07:33 -04:00
{
2024-08-20 21:58:29 -04:00
if (op >= sizeof...(operator_ids))
{
2024-08-20 13:07:33 -04:00
BLT_UNREACHABLE;
2024-08-20 21:58:29 -04:00
}
(call<operator_ids>(op, context, write_stack, read_stack, mask, lambdas) && ...);
// std::initializer_list<int>{((op == operator_ids) ? (execute(context, write_stack, read_stack, mask, lambdas), 0) : 0)...};
2024-08-20 13:07:33 -04:00
}
template<typename... Lambdas>
static inline void call_jmp_table(size_t op, void* context, stack_allocator& write_stack, stack_allocator& read_stack,
2024-08-20 21:58:29 -04:00
detail::bitmask_t* mask, Lambdas& ... lambdas)
2024-08-20 13:07:33 -04:00
{
call_jmp_table_internal(op, context, write_stack, read_stack, mask, std::index_sequence_for<Lambdas...>(),
lambdas...);
}
2024-06-29 10:47:27 -04:00
type_provider& system;
operator_storage storage;
};
2024-06-21 22:04:57 -04:00
class gp_program
{
public:
/**
* Note about context size: This is required as context is passed to every operator in the GP tree, this context will be provided by your
* call to one of the evaluator functions. This was the nicest way to provide this as C++ lacks reflection
*
* @param system type system to use in tree generation
2024-07-11 21:14:23 -04:00
* @param engine random engine to use throughout the program.
* @param context_size number of arguments which are always present as "context" to the GP system / operators
*/
2024-07-11 21:14:23 -04:00
explicit gp_program(type_provider& system, blt::u64 seed):
system(system), seed(seed)
{ create_threads(); }
2024-07-11 21:14:23 -04:00
explicit gp_program(type_provider& system, blt::u64 seed, prog_config_t config):
system(system), seed(seed), config(config)
{ create_threads(); }
void create_next_generation()
2024-07-09 03:57:58 -04:00
{
// should already be empty
next_pop.clear();
thread_helper.next_gen_left.store(config.population_size, std::memory_order_release);
(*thread_execution_service)(0);
2024-07-09 03:57:58 -04:00
}
2024-07-11 04:11:24 -04:00
void evaluate_fitness()
{
2024-07-11 21:14:23 -04:00
evaluate_fitness_internal();
2024-07-11 04:11:24 -04:00
}
/**
2024-07-11 04:11:24 -04:00
* takes in a reference to a function for the fitness evaluation function (must return a value convertable to double)
* The lambda must accept a tree for evaluation, and an index (current tree)
*
2024-07-11 04:11:24 -04:00
* tree_t& current_tree, blt::size_t index_of_tree
2024-07-09 21:57:18 -04:00
*
* Container must be concurrently accessible from multiple threads using operator[]
*
2024-07-11 04:11:24 -04:00
* NOTE: 0 is considered the best, in terms of standardized fitness
*/
template<typename FitnessFunc, typename Crossover, typename Mutation, typename Reproduction, typename CreationFunc = decltype(default_next_pop_creator<Crossover, Mutation, Reproduction>)>
void generate_population(type_id root_type, FitnessFunc& fitness_function,
Crossover& crossover_selection, Mutation& mutation_selection, Reproduction& reproduction_selection,
CreationFunc& func = default_next_pop_creator<Crossover, Mutation, Reproduction>, bool eval_fitness_now = true)
{
using LambdaReturn = typename decltype(blt::meta::lambda_helper(fitness_function))::Return;
2024-07-11 04:11:24 -04:00
current_pop = config.pop_initializer.get().generate(
{*this, root_type, config.population_size, config.initial_min_tree_size, config.initial_max_tree_size});
2024-07-12 18:33:39 -04:00
if (config.threads == 1)
{
2024-07-13 15:36:49 -04:00
BLT_INFO("Starting with single thread variant!");
thread_execution_service = new std::function(
[this, &fitness_function, &crossover_selection, &mutation_selection, &reproduction_selection, &func](blt::size_t) {
if (thread_helper.evaluation_left > 0)
2024-07-12 18:33:39 -04:00
{
for (const auto& ind : blt::enumerate(current_pop.get_individuals()))
{
if constexpr (std::is_same_v<LambdaReturn, bool> || std::is_convertible_v<LambdaReturn, bool>)
{
auto result = fitness_function(ind.second.tree, ind.second.fitness, ind.first);
if (result)
fitness_should_exit = true;
} else
{
fitness_function(ind.second.tree, ind.second.fitness, ind.first);
}
if (ind.second.fitness.adjusted_fitness > current_stats.best_fitness)
current_stats.best_fitness = ind.second.fitness.adjusted_fitness;
if (ind.second.fitness.adjusted_fitness < current_stats.worst_fitness)
current_stats.worst_fitness = ind.second.fitness.adjusted_fitness;
current_stats.overall_fitness = current_stats.overall_fitness + ind.second.fitness.adjusted_fitness;
}
thread_helper.evaluation_left = 0;
}
if (thread_helper.next_gen_left > 0)
2024-07-12 18:33:39 -04:00
{
static thread_local std::vector<tree_t> new_children;
new_children.clear();
auto args = get_selector_args(new_children);
2024-07-12 18:33:39 -04:00
crossover_selection.pre_process(*this, current_pop, current_stats);
mutation_selection.pre_process(*this, current_pop, current_stats);
reproduction_selection.pre_process(*this, current_pop, current_stats);
perform_elitism(args);
2024-07-12 18:33:39 -04:00
while (new_children.size() < config.population_size)
func(args, crossover_selection, mutation_selection, reproduction_selection);
2024-07-12 18:33:39 -04:00
for (auto& i : new_children)
next_pop.get_individuals().emplace_back(std::move(i));
2024-07-12 18:33:39 -04:00
thread_helper.next_gen_left = 0;
2024-07-12 18:33:39 -04:00
}
});
} else
{
BLT_INFO("Starting thread execution service!");
std::scoped_lock lock(thread_helper.thread_function_control);
thread_execution_service = new std::function(
[this, &fitness_function, &crossover_selection, &mutation_selection, &reproduction_selection, &func](blt::size_t id) {
thread_helper.barrier.wait();
if (thread_helper.evaluation_left > 0)
2024-08-17 04:35:44 -04:00
{
while (thread_helper.evaluation_left > 0)
{
blt::size_t size = 0;
blt::size_t begin = 0;
blt::size_t end = thread_helper.evaluation_left.load(std::memory_order_relaxed);
do
{
size = std::min(end, config.evaluation_size);
begin = end - size;
} while (!thread_helper.evaluation_left.compare_exchange_weak(end, end - size,
std::memory_order::memory_order_relaxed,
std::memory_order::memory_order_relaxed));
for (blt::size_t i = begin; i < end; i++)
{
auto& ind = current_pop.get_individuals()[i];
if constexpr (std::is_same_v<LambdaReturn, bool> || std::is_convertible_v<LambdaReturn, bool>)
{
auto result = fitness_function(ind.tree, ind.fitness, i);
if (result)
fitness_should_exit = true;
} else
{
fitness_function(ind.tree, ind.fitness, i);
}
auto old_best = current_stats.best_fitness.load(std::memory_order_relaxed);
while (ind.fitness.adjusted_fitness > old_best &&
!current_stats.best_fitness.compare_exchange_weak(old_best, ind.fitness.adjusted_fitness,
std::memory_order_relaxed,
std::memory_order_relaxed));
auto old_worst = current_stats.worst_fitness.load(std::memory_order_relaxed);
while (ind.fitness.adjusted_fitness < old_worst &&
!current_stats.worst_fitness.compare_exchange_weak(old_worst, ind.fitness.adjusted_fitness,
std::memory_order_relaxed,
std::memory_order_relaxed));
auto old_overall = current_stats.overall_fitness.load(std::memory_order_relaxed);
while (!current_stats.overall_fitness.compare_exchange_weak(old_overall,
ind.fitness.adjusted_fitness + old_overall,
std::memory_order_relaxed,
std::memory_order_relaxed));
}
}
}
if (thread_helper.next_gen_left > 0)
2024-08-17 04:35:44 -04:00
{
static thread_local std::vector<tree_t> new_children;
new_children.clear();
auto args = get_selector_args(new_children);
if (id == 0)
{
crossover_selection.pre_process(*this, current_pop, current_stats);
2024-08-18 02:08:48 -04:00
if (&crossover_selection != &mutation_selection)
mutation_selection.pre_process(*this, current_pop, current_stats);
if (&crossover_selection != &reproduction_selection)
reproduction_selection.pre_process(*this, current_pop, current_stats);
perform_elitism(args);
for (auto& i : new_children)
next_pop.get_individuals().emplace_back(std::move(i));
thread_helper.next_gen_left -= new_children.size();
new_children.clear();
}
thread_helper.barrier.wait();
2024-08-17 04:35:44 -04:00
while (thread_helper.next_gen_left > 0)
{
blt::size_t size = 0;
blt::size_t begin = 0;
blt::size_t end = thread_helper.next_gen_left.load(std::memory_order_relaxed);
do
{
size = std::min(end, config.evaluation_size);
begin = end - size;
} while (!thread_helper.next_gen_left.compare_exchange_weak(end, end - size,
std::memory_order::memory_order_relaxed,
std::memory_order::memory_order_relaxed));
for (blt::size_t i = begin; i < end; i++)
func(args, crossover_selection, mutation_selection, reproduction_selection);
{
std::scoped_lock lock(thread_helper.thread_generation_lock);
for (auto& i : new_children)
{
if (next_pop.get_individuals().size() < config.population_size)
next_pop.get_individuals().emplace_back(i);
}
}
}
2024-08-17 04:35:44 -04:00
}
thread_helper.barrier.wait();
});
2024-07-14 14:08:39 -04:00
thread_helper.thread_function_condition.notify_all();
2024-07-12 18:33:39 -04:00
}
if (eval_fitness_now)
evaluate_fitness_internal();
}
2024-08-07 01:58:53 -04:00
void reset_program(type_id root_type, bool eval_fitness_now = true)
{
current_generation = 0;
2024-08-12 13:48:06 -04:00
for (auto& pop : current_pop)
pop.tree.drop(*this);
2024-08-07 01:58:53 -04:00
current_pop = config.pop_initializer.get().generate(
{*this, root_type, config.population_size, config.initial_min_tree_size, config.initial_max_tree_size});
if (eval_fitness_now)
evaluate_fitness_internal();
}
void next_generation()
{
2024-08-12 20:36:21 -04:00
current_pop.drop(*this);
2024-07-09 03:57:58 -04:00
current_pop = std::move(next_pop);
current_generation++;
}
2024-07-10 22:00:28 -04:00
inline auto& get_current_pop()
{
return current_pop;
}
2024-07-09 21:57:18 -04:00
template<blt::size_t size>
std::array<blt::size_t, size> get_best_indexes()
{
2024-07-09 21:57:18 -04:00
std::array<blt::size_t, size> arr;
std::vector<std::pair<blt::size_t, double>> values;
values.reserve(current_pop.get_individuals().size());
for (const auto& ind : blt::enumerate(current_pop.get_individuals()))
2024-07-11 04:11:24 -04:00
values.emplace_back(ind.first, ind.second.fitness.adjusted_fitness);
2024-07-09 21:57:18 -04:00
std::sort(values.begin(), values.end(), [](const auto& a, const auto& b) {
2024-07-11 04:11:24 -04:00
return a.second > b.second;
2024-07-09 21:57:18 -04:00
});
for (blt::size_t i = 0; i < size; i++)
arr[i] = values[i].first;
return arr;
}
2024-07-09 21:57:18 -04:00
template<blt::size_t size>
2024-07-11 04:11:24 -04:00
auto get_best_trees()
2024-06-24 21:56:51 -04:00
{
2024-07-11 04:11:24 -04:00
return convert_array<std::array<std::reference_wrapper<tree_t>, size>>(get_best_indexes<size>(),
[this](auto&& arr, blt::size_t index) -> tree_t& {
return current_pop.get_individuals()[arr[index]].tree;
},
std::make_integer_sequence<blt::size_t, size>());
}
template<blt::size_t size>
auto get_best_individuals()
{
return convert_array<std::array<std::reference_wrapper<individual>, size>>(get_best_indexes<size>(),
[this](auto&& arr, blt::size_t index) -> individual& {
return current_pop.get_individuals()[arr[index]];
},
std::make_integer_sequence<blt::size_t, size>());
2024-06-24 21:56:51 -04:00
}
2024-07-09 21:57:18 -04:00
[[nodiscard]] bool should_terminate() const
2024-06-24 21:56:51 -04:00
{
return current_generation >= config.max_generations || fitness_should_exit;
2024-07-09 21:57:18 -04:00
}
2024-07-11 21:14:23 -04:00
[[nodiscard]] bool should_thread_terminate() const
2024-07-09 21:57:18 -04:00
{
2024-07-17 00:54:24 -04:00
return thread_helper.lifetime_over;
2024-06-24 21:56:51 -04:00
}
2024-07-11 21:14:23 -04:00
[[nodiscard]] random_t& get_random() const;
2024-06-29 10:47:27 -04:00
[[nodiscard]] inline type_provider& get_typesystem()
{
2024-06-21 22:04:57 -04:00
return system;
}
inline operator_id select_terminal(type_id id)
{
2024-06-29 14:03:57 -04:00
// we wanted a terminal, but could not find one, so we will select from a function that has a terminal
if (storage.terminals[id].empty())
return select_non_terminal_too_deep(id);
2024-07-11 21:14:23 -04:00
return get_random().select(storage.terminals[id]);
}
2024-06-19 14:12:04 -04:00
inline operator_id select_non_terminal(type_id id)
2024-06-19 14:12:04 -04:00
{
2024-08-05 02:40:16 -04:00
// non-terminal doesn't exist, return a terminal. This is useful for types that are defined only to have a random value, nothing more.
// was considering an std::optional<> but that would complicate the generator code considerably. I'll mark this as a TODO for v2
if (storage.non_terminals[id].empty())
return select_terminal(id);
2024-07-11 21:14:23 -04:00
return get_random().select(storage.non_terminals[id]);
}
2024-06-29 14:03:57 -04:00
inline operator_id select_non_terminal_too_deep(type_id id)
{
2024-08-05 02:40:16 -04:00
// this should probably be an error.
if (storage.operators_ordered_terminals[id].empty())
BLT_ABORT("An impossible state has been reached. Please consult the manual. Error 43");
2024-07-11 21:14:23 -04:00
return get_random().select(storage.operators_ordered_terminals[id]).first;
2024-06-29 14:03:57 -04:00
}
2024-06-27 03:01:39 -04:00
inline operator_info& get_operator_info(operator_id id)
{
return storage.operators[id];
}
inline detail::print_func_t& get_print_func(operator_id id)
{
return storage.print_funcs[id];
}
2024-08-12 13:48:06 -04:00
inline detail::destroy_func_t& get_destroy_func(operator_id id)
{
return storage.destroy_funcs[id];
}
inline std::optional<std::string_view> get_name(operator_id id)
{
return storage.names[id];
}
inline std::vector<operator_id>& get_type_terminals(type_id id)
{
2024-06-29 10:47:27 -04:00
return storage.terminals[id];
}
inline std::vector<operator_id>& get_type_non_terminals(type_id id)
{
2024-06-29 10:47:27 -04:00
return storage.non_terminals[id];
}
inline bool is_static(operator_id id)
{
2024-06-29 10:47:27 -04:00
return storage.static_types.contains(static_cast<blt::size_t>(id));
}
2024-08-07 01:58:53 -04:00
inline void set_operations(operator_storage op)
{
2024-06-29 10:47:27 -04:00
storage = std::move(op);
2024-06-19 14:12:04 -04:00
}
2024-07-09 21:57:18 -04:00
2024-08-20 13:07:33 -04:00
inline detail::eval_func_t& get_eval_func()
{
return storage.eval_func;
}
2024-07-09 21:57:18 -04:00
[[nodiscard]] inline auto get_current_generation() const
{
2024-07-11 21:14:23 -04:00
return current_generation.load();
}
[[nodiscard]] inline auto& get_population_stats()
{
return current_stats;
}
~gp_program()
{
2024-08-12 20:36:21 -04:00
current_pop.drop(*this);
2024-07-11 21:14:23 -04:00
thread_helper.lifetime_over = true;
2024-07-13 15:36:49 -04:00
thread_helper.barrier.notify_all();
2024-07-16 21:56:21 -04:00
thread_helper.thread_function_condition.notify_all();
2024-07-11 21:14:23 -04:00
for (auto& thread : thread_helper.threads)
{
if (thread->joinable())
thread->join();
}
auto* cpy = thread_execution_service.load(std::memory_order_acquire);
thread_execution_service = nullptr;
delete cpy;
2024-07-09 21:57:18 -04:00
}
2024-07-19 22:54:32 -04:00
void kill()
{
thread_helper.lifetime_over = true;
}
2024-06-19 14:12:04 -04:00
private:
2024-06-29 10:47:27 -04:00
type_provider& system;
2024-06-29 10:47:27 -04:00
operator_storage storage;
population_t current_pop;
2024-07-19 22:54:32 -04:00
population_stats current_stats{};
population_t next_pop;
2024-07-11 21:14:23 -04:00
std::atomic_uint64_t current_generation = 0;
2024-08-06 03:51:49 -04:00
std::atomic_bool fitness_should_exit = false;
2024-06-29 10:47:27 -04:00
2024-07-11 21:14:23 -04:00
blt::u64 seed;
2024-07-23 03:09:12 -04:00
prog_config_t config{};
2024-07-09 21:57:18 -04:00
2024-07-11 21:14:23 -04:00
struct concurrency_storage
{
std::vector<std::unique_ptr<std::thread>> threads;
2024-07-14 14:08:39 -04:00
2024-07-13 15:36:49 -04:00
std::mutex thread_function_control;
std::mutex thread_generation_lock;
2024-07-19 22:54:32 -04:00
std::condition_variable thread_function_condition{};
2024-07-14 14:08:39 -04:00
2024-07-11 21:14:23 -04:00
std::atomic_uint64_t evaluation_left = 0;
2024-08-17 04:35:44 -04:00
std::atomic_uint64_t next_gen_left = 0;
2024-07-11 21:14:23 -04:00
std::atomic_bool lifetime_over = false;
2024-07-14 14:08:39 -04:00
blt::barrier barrier;
2024-07-13 15:36:49 -04:00
2024-07-14 14:08:39 -04:00
explicit concurrency_storage(blt::size_t threads): barrier(threads, lifetime_over)
2024-07-13 15:36:49 -04:00
{}
2024-07-23 03:09:12 -04:00
} thread_helper{config.threads == 0 ? std::thread::hardware_concurrency() : config.threads};
2024-07-11 21:14:23 -04:00
2024-07-11 04:11:24 -04:00
// for convenience, shouldn't decrease performance too much
2024-07-13 15:36:49 -04:00
std::atomic<std::function<void(blt::size_t)>*> thread_execution_service = nullptr;
2024-07-11 04:11:24 -04:00
inline selector_args get_selector_args(std::vector<tree_t>& next_pop_trees)
2024-07-09 21:57:18 -04:00
{
return {*this, next_pop_trees, current_pop, current_stats, config, get_random()};
2024-07-09 21:57:18 -04:00
}
2024-07-11 04:11:24 -04:00
template<typename Return, blt::size_t size, typename Accessor, blt::size_t... indexes>
inline Return convert_array(std::array<blt::size_t, size>&& arr, Accessor&& accessor,
std::integer_sequence<blt::size_t, indexes...>)
2024-07-09 21:57:18 -04:00
{
2024-07-11 04:11:24 -04:00
return Return{accessor(arr, indexes)...};
}
2024-07-11 21:14:23 -04:00
void create_threads();
void evaluate_fitness_internal()
2024-07-11 04:11:24 -04:00
{
2024-07-11 21:14:23 -04:00
current_stats.clear();
thread_helper.evaluation_left.store(current_pop.get_individuals().size(), std::memory_order_release);
2024-07-13 15:36:49 -04:00
(*thread_execution_service)(0);
2024-07-11 21:14:23 -04:00
current_stats.average_fitness = current_stats.overall_fitness / static_cast<double>(config.population_size);
2024-07-09 21:57:18 -04:00
}
2024-06-19 14:12:04 -04:00
};
2024-06-02 21:27:00 -04:00
}
#endif //BLT_GP_PROGRAM_H