COSC-4P80-Assignment-2/include/assign2/network.h

131 lines
5.2 KiB
C
Raw Normal View History

2024-10-21 19:25:00 -04:00
#pragma once
/*
* Copyright (C) 2024 Brett Terpstra
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef COSC_4P80_ASSIGNMENT_2_NETWORK_H
#define COSC_4P80_ASSIGNMENT_2_NETWORK_H
#include <assign2/common.h>
#include <assign2/layer.h>
namespace assign2
{
class network_t
{
public:
2024-10-23 01:51:32 -04:00
template<typename WeightFunc, typename BiasFunc>
network_t(blt::i32 input_size, blt::i32 output_size, blt::i32 layer_count, blt::i32 hidden_size, WeightFunc w, BiasFunc b):
input_size(input_size), output_size(output_size), hidden_count(layer_count), hidden_size(hidden_size)
2024-10-21 19:25:00 -04:00
{
2024-10-23 01:51:32 -04:00
if (layer_count > 0)
2024-10-21 19:25:00 -04:00
{
2024-10-23 01:51:32 -04:00
for (blt::i32 i = 0; i < layer_count; i++)
{
if (i == 0)
layers.push_back(layer_t{input_size, hidden_size, w, b});
else
layers.push_back(layer_t{hidden_size, hidden_size, w, b});
}
layers.push_back(layer_t{hidden_size, output_size, w, b});
2024-10-21 19:25:00 -04:00
} else
2024-10-23 01:51:32 -04:00
{
layers.push_back(layer_t{input_size, output_size, w, b});
}
}
template<typename WeightFunc, typename BiasFunc, typename OutputWeightFunc, typename OutputBiasFunc>
network_t(blt::i32 input_size, blt::i32 output_size, blt::i32 layer_count, blt::i32 hidden_size,
WeightFunc w, BiasFunc b, OutputWeightFunc ow, OutputBiasFunc ob):
input_size(input_size), output_size(output_size), hidden_count(layer_count), hidden_size(hidden_size)
{
if (layer_count > 0)
{
for (blt::i32 i = 0; i < layer_count; i++)
{
if (i == 0)
layers.push_back(layer_t{input_size, hidden_size, w, b});
else
layers.push_back(layer_t{hidden_size, hidden_size, w, b});
}
layers.push_back(layer_t{hidden_size, output_size, ow, ob});
} else
{
layers.push_back(layer_t{input_size, output_size, ow, ob});
}
}
explicit network_t(std::vector<layer_t> layers):
input_size(layers.begin()->get_in_size()), output_size(layers.end()->get_out_size()),
hidden_count(static_cast<blt::i32>(layers.size()) - 1), hidden_size(layers.end()->get_in_size()), layers(std::move(layers))
{}
network_t() = default;
template<typename ActFunc, typename ActFuncOut>
std::vector<Scalar> execute(const std::vector<Scalar>& input, ActFunc func, ActFuncOut outFunc)
{
std::vector<Scalar> previous_output;
std::vector<Scalar> current_output;
for (auto [i, v] : blt::enumerate(layers))
{
previous_output = current_output;
if (i == 0)
current_output = v.call(input, func);
else if (i == layers.size() - 1)
current_output = v.call(previous_output, outFunc);
else
current_output = v.call(previous_output, func);
}
return current_output;
}
Scalar train(const data_file_t& example)
{
const Scalar learn_rate = 0.1;
Scalar total_error = 0;
for (const auto& x : example.data_points)
{
auto o = execute(x.bins, sigmoid_function{}, sigmoid_function{});
auto y = x.is_bad ? 1.0f : 0.0f;
Scalar is_bad = 0;
if (o[0] >= 1)
is_bad = 0;
else if (o[1] >= 1)
is_bad = 1;
auto error = y - is_bad;
if (o[0] >= 1 && o[1] >= 1)
error += 1;
total_error += error;
}
return total_error;
2024-10-21 19:25:00 -04:00
}
private:
blt::i32 input_size, output_size, hidden_count, hidden_size;
std::vector<layer_t> layers;
};
}
#endif //COSC_4P80_ASSIGNMENT_2_NETWORK_H