2024-10-21 19:25:00 -04:00
|
|
|
#pragma once
|
|
|
|
/*
|
|
|
|
* Copyright (C) 2024 Brett Terpstra
|
|
|
|
*
|
|
|
|
* This program is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef COSC_4P80_ASSIGNMENT_2_NETWORK_H
|
|
|
|
#define COSC_4P80_ASSIGNMENT_2_NETWORK_H
|
|
|
|
|
|
|
|
#include <assign2/common.h>
|
|
|
|
#include <assign2/layer.h>
|
2024-10-25 01:22:32 -04:00
|
|
|
#include "blt/std/assert.h"
|
2024-10-21 19:25:00 -04:00
|
|
|
|
|
|
|
namespace assign2
|
|
|
|
{
|
|
|
|
class network_t
|
|
|
|
{
|
|
|
|
public:
|
2024-10-23 01:51:32 -04:00
|
|
|
template<typename WeightFunc, typename BiasFunc>
|
2024-10-25 14:01:47 -04:00
|
|
|
network_t(blt::i32 input_size, blt::i32 output_size, blt::i32 layer_count, blt::i32 hidden_size, WeightFunc w, BiasFunc b)
|
2024-10-21 19:25:00 -04:00
|
|
|
{
|
2024-10-23 01:51:32 -04:00
|
|
|
if (layer_count > 0)
|
2024-10-21 19:25:00 -04:00
|
|
|
{
|
2024-10-23 01:51:32 -04:00
|
|
|
for (blt::i32 i = 0; i < layer_count; i++)
|
|
|
|
{
|
|
|
|
if (i == 0)
|
|
|
|
layers.push_back(layer_t{input_size, hidden_size, w, b});
|
|
|
|
else
|
|
|
|
layers.push_back(layer_t{hidden_size, hidden_size, w, b});
|
|
|
|
}
|
|
|
|
layers.push_back(layer_t{hidden_size, output_size, w, b});
|
2024-10-21 19:25:00 -04:00
|
|
|
} else
|
2024-10-23 01:51:32 -04:00
|
|
|
{
|
|
|
|
layers.push_back(layer_t{input_size, output_size, w, b});
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename WeightFunc, typename BiasFunc, typename OutputWeightFunc, typename OutputBiasFunc>
|
|
|
|
network_t(blt::i32 input_size, blt::i32 output_size, blt::i32 layer_count, blt::i32 hidden_size,
|
2024-10-25 14:01:47 -04:00
|
|
|
WeightFunc w, BiasFunc b, OutputWeightFunc ow, OutputBiasFunc ob)
|
2024-10-23 01:51:32 -04:00
|
|
|
{
|
|
|
|
if (layer_count > 0)
|
|
|
|
{
|
|
|
|
for (blt::i32 i = 0; i < layer_count; i++)
|
|
|
|
{
|
|
|
|
if (i == 0)
|
|
|
|
layers.push_back(layer_t{input_size, hidden_size, w, b});
|
|
|
|
else
|
|
|
|
layers.push_back(layer_t{hidden_size, hidden_size, w, b});
|
|
|
|
}
|
|
|
|
layers.push_back(layer_t{hidden_size, output_size, ow, ob});
|
|
|
|
} else
|
|
|
|
{
|
|
|
|
layers.push_back(layer_t{input_size, output_size, ow, ob});
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-10-25 14:01:47 -04:00
|
|
|
explicit network_t(std::vector<layer_t> layers): layers(std::move(layers))
|
2024-10-23 01:51:32 -04:00
|
|
|
{}
|
|
|
|
|
|
|
|
network_t() = default;
|
|
|
|
|
2024-10-25 14:01:47 -04:00
|
|
|
const std::vector<Scalar>& execute(const std::vector<Scalar>& input)
|
2024-10-23 01:51:32 -04:00
|
|
|
{
|
2024-10-25 14:01:47 -04:00
|
|
|
std::vector<blt::ref<const std::vector<Scalar>>> outputs;
|
|
|
|
outputs.emplace_back(input);
|
2024-10-23 01:51:32 -04:00
|
|
|
|
2024-10-25 14:01:47 -04:00
|
|
|
for (auto& v : layers)
|
|
|
|
outputs.emplace_back(v.call(outputs.back()));
|
2024-10-23 01:51:32 -04:00
|
|
|
|
2024-10-25 14:01:47 -04:00
|
|
|
return outputs.back();
|
2024-10-23 01:51:32 -04:00
|
|
|
}
|
|
|
|
|
2024-10-25 01:22:32 -04:00
|
|
|
std::pair<Scalar, Scalar> error(const std::vector<Scalar>& outputs, bool is_bad)
|
2024-10-23 01:51:32 -04:00
|
|
|
{
|
2024-10-25 01:22:32 -04:00
|
|
|
BLT_ASSERT(outputs.size() == 2);
|
|
|
|
auto g = is_bad ? 0.0f : 1.0f;
|
|
|
|
auto b = is_bad ? 1.0f : 0.0f;
|
|
|
|
|
|
|
|
auto g_diff = outputs[0] - g;
|
|
|
|
auto b_diff = outputs[1] - b;
|
2024-10-23 01:51:32 -04:00
|
|
|
|
2024-10-25 01:22:32 -04:00
|
|
|
auto error = g_diff * g_diff + b_diff * b_diff;
|
|
|
|
BLT_INFO("%f %f %f", error, g_diff, b_diff);
|
|
|
|
|
|
|
|
return {0.5f * (error * error), error};
|
|
|
|
}
|
|
|
|
|
2024-10-25 14:01:47 -04:00
|
|
|
Scalar train_epoch(const data_file_t& example)
|
2024-10-25 01:22:32 -04:00
|
|
|
{
|
2024-10-23 01:51:32 -04:00
|
|
|
Scalar total_error = 0;
|
2024-10-25 01:22:32 -04:00
|
|
|
Scalar total_d_error = 0;
|
2024-10-23 01:51:32 -04:00
|
|
|
for (const auto& x : example.data_points)
|
|
|
|
{
|
2024-10-25 14:01:47 -04:00
|
|
|
execute(x.bins);
|
|
|
|
std::vector<Scalar> expected{x.is_bad ? 0.0f : 1.0f, x.is_bad ? 1.0f : 0.0f};
|
|
|
|
|
|
|
|
for (auto [i, layer] : blt::iterate(layers).enumerate().rev())
|
|
|
|
{
|
|
|
|
if (i == layers.size() - 1)
|
|
|
|
{
|
|
|
|
auto e = layer.back_prop(layers[i - 1].outputs, expected);
|
|
|
|
total_error += e;
|
|
|
|
} else if (i == 0)
|
|
|
|
{
|
|
|
|
auto e = layer.back_prop(x.bins, layers[i + 1]);
|
|
|
|
total_error += e;
|
|
|
|
} else
|
|
|
|
{
|
|
|
|
auto e = layer.back_prop(layers[i - 1].outputs, layers[i + 1]);
|
|
|
|
total_error += e;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (auto& l : layers)
|
|
|
|
l.update();
|
2024-10-23 01:51:32 -04:00
|
|
|
}
|
2024-10-25 01:22:32 -04:00
|
|
|
BLT_DEBUG("Total Errors found %f, %f", total_error, total_d_error);
|
|
|
|
|
2024-10-23 01:51:32 -04:00
|
|
|
return total_error;
|
2024-10-21 19:25:00 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
std::vector<layer_t> layers;
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif //COSC_4P80_ASSIGNMENT_2_NETWORK_H
|