COSC-4P80-Assignment-2/include/assign2/network.h

143 lines
5.5 KiB
C
Raw Normal View History

2024-10-21 19:25:00 -04:00
#pragma once
/*
* Copyright (C) 2024 Brett Terpstra
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef COSC_4P80_ASSIGNMENT_2_NETWORK_H
#define COSC_4P80_ASSIGNMENT_2_NETWORK_H
#include <assign2/common.h>
#include <assign2/layer.h>
2024-10-25 01:22:32 -04:00
#include "blt/std/assert.h"
2024-10-27 18:09:37 -04:00
#include "global_magic.h"
2024-10-21 19:25:00 -04:00
namespace assign2
{
class network_t
{
public:
2024-10-23 01:51:32 -04:00
template<typename WeightFunc, typename BiasFunc>
2024-10-25 14:01:47 -04:00
network_t(blt::i32 input_size, blt::i32 output_size, blt::i32 layer_count, blt::i32 hidden_size, WeightFunc w, BiasFunc b)
2024-10-21 19:25:00 -04:00
{
2024-10-23 01:51:32 -04:00
if (layer_count > 0)
2024-10-21 19:25:00 -04:00
{
2024-10-23 01:51:32 -04:00
for (blt::i32 i = 0; i < layer_count; i++)
{
if (i == 0)
2024-10-27 18:09:37 -04:00
layers.push_back(std::make_unique<layer_t>(input_size, hidden_size, w, b));
2024-10-23 01:51:32 -04:00
else
2024-10-27 18:09:37 -04:00
layers.push_back(std::make_unique<layer_t>(hidden_size, hidden_size, w, b));
2024-10-23 01:51:32 -04:00
}
2024-10-27 18:09:37 -04:00
layers.push_back(std::make_unique<layer_t>(hidden_size, output_size, w, b));
2024-10-21 19:25:00 -04:00
} else
2024-10-23 01:51:32 -04:00
{
2024-10-27 18:09:37 -04:00
layers.push_back(std::make_unique<layer_t>(input_size, output_size, w, b));
2024-10-23 01:51:32 -04:00
}
}
template<typename WeightFunc, typename BiasFunc, typename OutputWeightFunc, typename OutputBiasFunc>
network_t(blt::i32 input_size, blt::i32 output_size, blt::i32 layer_count, blt::i32 hidden_size,
2024-10-25 14:01:47 -04:00
WeightFunc w, BiasFunc b, OutputWeightFunc ow, OutputBiasFunc ob)
2024-10-23 01:51:32 -04:00
{
if (layer_count > 0)
{
for (blt::i32 i = 0; i < layer_count; i++)
{
if (i == 0)
2024-10-27 18:09:37 -04:00
layers.push_back(std::make_unique<layer_t>(input_size, hidden_size, w, b));
2024-10-23 01:51:32 -04:00
else
2024-10-27 18:09:37 -04:00
layers.push_back(std::make_unique<layer_t>(hidden_size, hidden_size, w, b));
2024-10-23 01:51:32 -04:00
}
2024-10-27 18:09:37 -04:00
layers.push_back(std::make_unique<layer_t>(hidden_size, output_size, ow, ob));
2024-10-23 01:51:32 -04:00
} else
{
2024-10-27 18:09:37 -04:00
layers.push_back(std::make_unique<layer_t>(input_size, output_size, ow, ob));
2024-10-23 01:51:32 -04:00
}
}
2024-10-27 18:09:37 -04:00
explicit network_t(std::vector<std::unique_ptr<layer_t>> layers): layers(std::move(layers))
2024-10-23 01:51:32 -04:00
{}
network_t() = default;
2024-10-25 14:01:47 -04:00
const std::vector<Scalar>& execute(const std::vector<Scalar>& input)
2024-10-23 01:51:32 -04:00
{
2024-10-25 14:01:47 -04:00
std::vector<blt::ref<const std::vector<Scalar>>> outputs;
outputs.emplace_back(input);
2024-10-23 01:51:32 -04:00
2024-10-25 14:01:47 -04:00
for (auto& v : layers)
2024-10-27 18:09:37 -04:00
outputs.emplace_back(v->call(outputs.back()));
2024-10-23 01:51:32 -04:00
2024-10-25 14:01:47 -04:00
return outputs.back();
2024-10-23 01:51:32 -04:00
}
2024-10-27 18:09:37 -04:00
std::pair<Scalar, Scalar> train_epoch(const data_file_t& example)
2024-10-25 01:22:32 -04:00
{
2024-10-23 01:51:32 -04:00
Scalar total_error = 0;
2024-10-25 01:22:32 -04:00
Scalar total_d_error = 0;
2024-10-23 01:51:32 -04:00
for (const auto& x : example.data_points)
{
2024-10-25 14:01:47 -04:00
execute(x.bins);
std::vector<Scalar> expected{x.is_bad ? 0.0f : 1.0f, x.is_bad ? 1.0f : 0.0f};
for (auto [i, layer] : blt::iterate(layers).enumerate().rev())
{
if (i == layers.size() - 1)
{
2024-10-27 18:09:37 -04:00
auto e = layer->back_prop(layers[i - 1]->outputs, expected);
// layer->update();
total_error += e.first;
total_d_error += e.second;
2024-10-25 14:01:47 -04:00
} else if (i == 0)
{
2024-10-27 18:09:37 -04:00
auto e = layer->back_prop(x.bins, *layers[i + 1]);
// layer->update();
total_error += e.first;
total_d_error += e.second;
2024-10-25 14:01:47 -04:00
} else
{
2024-10-27 18:09:37 -04:00
auto e = layer->back_prop(layers[i - 1]->outputs, *layers[i + 1]);
// layer->update();
total_error += e.first;
total_d_error += e.second;
2024-10-25 14:01:47 -04:00
}
}
for (auto& l : layers)
2024-10-27 18:09:37 -04:00
l->update();
2024-10-23 01:51:32 -04:00
}
2024-10-27 18:09:37 -04:00
// errors_over_time.push_back(total_error);
// BLT_DEBUG("Total Errors found %f, %f", total_error, total_d_error);
2024-10-25 01:22:32 -04:00
2024-10-27 18:09:37 -04:00
return {total_error, total_d_error};
2024-10-21 19:25:00 -04:00
}
2024-10-27 18:09:37 -04:00
#ifdef BLT_USE_GRAPHICS
void render() const
{
for (auto& l : layers)
l->render();
}
#endif
2024-10-21 19:25:00 -04:00
private:
2024-10-27 18:09:37 -04:00
std::vector<std::unique_ptr<layer_t>> layers;
2024-10-21 19:25:00 -04:00
};
}
#endif //COSC_4P80_ASSIGNMENT_2_NETWORK_H